Christian Zenner, Lindsay J. Hall, Susmita Roy, Jürgen Hauer, Ronald Sroka, Kiran Sankar Maiti
{"title":"Measurement of Bacterial Headspaces by FT-IR Spectroscopy Reveals Distinct Volatile Organic Compound Signatures","authors":"Christian Zenner, Lindsay J. Hall, Susmita Roy, Jürgen Hauer, Ronald Sroka, Kiran Sankar Maiti","doi":"10.1021/acs.analchem.4c02899","DOIUrl":null,"url":null,"abstract":"Ensuring prompt and precise identification of bacterial pathogens is essential for initiating appropriate antibiotic therapy and combating severe bacterial infections effectively. Traditional microbiological diagnostics, involving initial culturing and subsequent pathogen detection, are often laborious and time-consuming. Even though modern techniques such as Raman spectroscopy, MALDI-TOF, and 16S rRNA PCR have significantly expedited this process, new methods are required for the accurate and fast detection of bacterial pathogens. In this context, using bacterial metabolites for detection is promising as a future diagnostic approach. Fourier-transform infrared spectroscopy was employed in our study to analyze the biochemical composition of gas phases of bacterial isolates. We can characterize individual bacterial strains and identify specific bacteria within mixtures by utilizing volatile-metabolite-based infrared detection techniques. This approach enables rapid identification by discerning distinctive spectral features and intensities for different bacteria, offering new perspectives for bacterial pathogen diagnostics. This technique holds innovative potential to accelerate progress in the field, providing a faster and potentially more precise alternative to conventional diagnostic methods.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"19 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c02899","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring prompt and precise identification of bacterial pathogens is essential for initiating appropriate antibiotic therapy and combating severe bacterial infections effectively. Traditional microbiological diagnostics, involving initial culturing and subsequent pathogen detection, are often laborious and time-consuming. Even though modern techniques such as Raman spectroscopy, MALDI-TOF, and 16S rRNA PCR have significantly expedited this process, new methods are required for the accurate and fast detection of bacterial pathogens. In this context, using bacterial metabolites for detection is promising as a future diagnostic approach. Fourier-transform infrared spectroscopy was employed in our study to analyze the biochemical composition of gas phases of bacterial isolates. We can characterize individual bacterial strains and identify specific bacteria within mixtures by utilizing volatile-metabolite-based infrared detection techniques. This approach enables rapid identification by discerning distinctive spectral features and intensities for different bacteria, offering new perspectives for bacterial pathogen diagnostics. This technique holds innovative potential to accelerate progress in the field, providing a faster and potentially more precise alternative to conventional diagnostic methods.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.