Lin Lin, Sasha Yang, Fuhong Zhang, Muxin Liu, Dong Liu, Lei Shi
{"title":"TG-MS Analysis for Elemental Composition of Organic Matters and Their Structural Properties","authors":"Lin Lin, Sasha Yang, Fuhong Zhang, Muxin Liu, Dong Liu, Lei Shi","doi":"10.1021/acs.analchem.4c05453","DOIUrl":null,"url":null,"abstract":"A novel approach for determining the elemental content of organic matter through thermal gravimetric analysis coupled online with a mass spectrometer (TG-MS) is disclosed. This method not only yields results equivalent to ASTM analysis but also provides insight into the covalent bond structure within the sample. The principle of this technique consists of the combustion of organic matter in an oxygen-enriched environment within the thermogravimetric (TG) system. The gases generated during combustion, including carbon-containing gases such as CO<sub>2</sub> and CO, hydrogen-containing gases such as H<sub>2</sub>O, nitrogen-containing gases such as NO<sub>2</sub> and NO, and sulfur-containing gases such as SO<sub>2</sub>, are then analyzed using online MS. Quantitative analysis of these gases is accomplished via an external standard method, facilitating the determination of the elemental content of the organic matters. The experiment employed a temperature-programmed heating rate of 10 °C/min, a carrier gas flow rate of 100 mL/min, and an oxygen concentration of 50% by volume. We conducted tests on a range of 23 samples, including coal, heavy oil, oil shale, and biomass. The results for coal, oil shale, and biomass samples were consistent with ASTM standards, while the heavy oil samples demonstrated slightly lower values compared with ASTM methods. Furthermore, we probed into the mass loss and gas generation processes that occur during the combustion of samples, and these results enhance the understanding of the mechanism of organic matter combustion as well as that of the covalent bond structure of organic matters.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"147 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05453","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel approach for determining the elemental content of organic matter through thermal gravimetric analysis coupled online with a mass spectrometer (TG-MS) is disclosed. This method not only yields results equivalent to ASTM analysis but also provides insight into the covalent bond structure within the sample. The principle of this technique consists of the combustion of organic matter in an oxygen-enriched environment within the thermogravimetric (TG) system. The gases generated during combustion, including carbon-containing gases such as CO2 and CO, hydrogen-containing gases such as H2O, nitrogen-containing gases such as NO2 and NO, and sulfur-containing gases such as SO2, are then analyzed using online MS. Quantitative analysis of these gases is accomplished via an external standard method, facilitating the determination of the elemental content of the organic matters. The experiment employed a temperature-programmed heating rate of 10 °C/min, a carrier gas flow rate of 100 mL/min, and an oxygen concentration of 50% by volume. We conducted tests on a range of 23 samples, including coal, heavy oil, oil shale, and biomass. The results for coal, oil shale, and biomass samples were consistent with ASTM standards, while the heavy oil samples demonstrated slightly lower values compared with ASTM methods. Furthermore, we probed into the mass loss and gas generation processes that occur during the combustion of samples, and these results enhance the understanding of the mechanism of organic matter combustion as well as that of the covalent bond structure of organic matters.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.