Predicting electronic screening for fast Koopmans spectral functional calculations

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-12-20 DOI:10.1038/s41524-024-01484-3
Yannick Schubert, Sandra Luber, Nicola Marzari, Edward Linscott
{"title":"Predicting electronic screening for fast Koopmans spectral functional calculations","authors":"Yannick Schubert, Sandra Luber, Nicola Marzari, Edward Linscott","doi":"10.1038/s41524-024-01484-3","DOIUrl":null,"url":null,"abstract":"<p>Koopmans spectral functionals are a powerful extension of Kohn-Sham density-functional theory (DFT) that enables the prediction of spectral properties with state-of-the-art accuracy. The success of these functionals relies on capturing the effects of electronic screening through scalar, orbital-dependent parameters. These parameters have to be computed for every calculation, making Koopmans spectral functionals more expensive than their DFT counterparts. In this work, we present a machine-learning model that—with minimal training—can predict these screening parameters directly from orbital densities calculated at the DFT level. We show in two prototypical use cases that using the screening parameters predicted by this model, instead of those calculated from linear response, leads to orbital energies that differ by less than 20 meV on average. Since this approach dramatically reduces run times with minimal loss of accuracy, it will enable the application of Koopmans spectral functionals to classes of problems that previously would have been prohibitively expensive, such as the prediction of temperature-dependent spectral properties. More broadly, this work demonstrates that measuring violations of piecewise linearity (i.e., curvature in total energies with respect to occupancies) can be done efficiently by combining frozen-orbital approximations and machine learning.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01484-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Koopmans spectral functionals are a powerful extension of Kohn-Sham density-functional theory (DFT) that enables the prediction of spectral properties with state-of-the-art accuracy. The success of these functionals relies on capturing the effects of electronic screening through scalar, orbital-dependent parameters. These parameters have to be computed for every calculation, making Koopmans spectral functionals more expensive than their DFT counterparts. In this work, we present a machine-learning model that—with minimal training—can predict these screening parameters directly from orbital densities calculated at the DFT level. We show in two prototypical use cases that using the screening parameters predicted by this model, instead of those calculated from linear response, leads to orbital energies that differ by less than 20 meV on average. Since this approach dramatically reduces run times with minimal loss of accuracy, it will enable the application of Koopmans spectral functionals to classes of problems that previously would have been prohibitively expensive, such as the prediction of temperature-dependent spectral properties. More broadly, this work demonstrates that measuring violations of piecewise linearity (i.e., curvature in total energies with respect to occupancies) can be done efficiently by combining frozen-orbital approximations and machine learning.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Shotgun crystal structure prediction using machine-learned formation energies Predicting electronic screening for fast Koopmans spectral functional calculations Optimal pre-train/fine-tune strategies for accurate material property predictions Data efficient machine learning potentials for modeling catalytic reactivity via active learning and enhanced sampling Chemical ordering and magnetism in face-centered cubic CrCoNi alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1