Komal Poria, Rajesh Parmar, Harita Kumari, Sunil Dhankhar, R. S. Kundu
{"title":"Physical and Optical Properties of Tellurium Dioxide-Based Quaternary Glasses: Potential for Nonlinear Optical Applications","authors":"Komal Poria, Rajesh Parmar, Harita Kumari, Sunil Dhankhar, R. S. Kundu","doi":"10.1007/s11664-024-11566-z","DOIUrl":null,"url":null,"abstract":"<div><p>An exploration was undertaken to examine the physical and optical traits of a quaternary glass system utilizing tellurium dioxide as its primary component. The glasses were prepared with 60TeO<sub>2</sub>-15B<sub>2</sub>O<sub>3</sub>-(25−<i>x</i>)Bi<sub>2</sub>O<sub>3</sub>-xSrCl<sub>2</sub> molar composition, where <i>x</i> = 5 mol.%, 10 mol.%, 15 mol.%, and 20 mol.%. The utilization of x-ray diffraction interpretation verified the amorphous nature of the glasses. Several physical properties were measured, including density (<i>ρ</i>), molar volume (<i>V</i><sub>m</sub>), and oxygen packing density (OPD). It was observed that the density decreased (from 5.301 g/cm<sup>3</sup> to 3.542 g/cm<sup>3</sup>) as the heavier molar mass of bismuth(III) oxide was replaced with the lighter molar mass of strontium chloride. Consequently, the glass matrix became less dense. The molar volume increased (from 40.129 cm<sup>3</sup>/mol to 51.612 cm<sup>3</sup>/mol) with higher strontium chloride content. Adding strontium chloride decreased the OPD (from 56.069 to 34.875), reducing the number of oxygen atoms in the glass sample. The optical properties were analyzed via the ultraviolet absorption spectrum. The cutoff wavelength (<i>λ</i><sub>c</sub>) decreased (from 442 nm to 359 nm) as the strontium chloride content increased. With increased strontium chloride content, the prepared glasses showed indirect transitions in their energy band gaps. Additionally, the values of the indirect band gap energy (<i>E</i><sub>opt</sub>) increased from 2.02 eV to 2.95 eV. The Urbach energy (Δ<i>E</i>), which characterizes the disorder in the glass structure, decreased (from 0.288 eV to 0.270 eV) with increasing strontium chloride concentration, indicating a lower defect concentration. The molar refractivity values ranged from 26.82 to 31.79, reflecting the polarizability of the constituent ions. The glasses demonstrated a metallization criterion within the range of 0.332 to 0.384, indicating their promise for applications in the area of nonlinear optical devices.</p><h3>Graphical Abstract</h3><p>Spectra of optical absorption for the TBSr glasses.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"172 - 179"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11566-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An exploration was undertaken to examine the physical and optical traits of a quaternary glass system utilizing tellurium dioxide as its primary component. The glasses were prepared with 60TeO2-15B2O3-(25−x)Bi2O3-xSrCl2 molar composition, where x = 5 mol.%, 10 mol.%, 15 mol.%, and 20 mol.%. The utilization of x-ray diffraction interpretation verified the amorphous nature of the glasses. Several physical properties were measured, including density (ρ), molar volume (Vm), and oxygen packing density (OPD). It was observed that the density decreased (from 5.301 g/cm3 to 3.542 g/cm3) as the heavier molar mass of bismuth(III) oxide was replaced with the lighter molar mass of strontium chloride. Consequently, the glass matrix became less dense. The molar volume increased (from 40.129 cm3/mol to 51.612 cm3/mol) with higher strontium chloride content. Adding strontium chloride decreased the OPD (from 56.069 to 34.875), reducing the number of oxygen atoms in the glass sample. The optical properties were analyzed via the ultraviolet absorption spectrum. The cutoff wavelength (λc) decreased (from 442 nm to 359 nm) as the strontium chloride content increased. With increased strontium chloride content, the prepared glasses showed indirect transitions in their energy band gaps. Additionally, the values of the indirect band gap energy (Eopt) increased from 2.02 eV to 2.95 eV. The Urbach energy (ΔE), which characterizes the disorder in the glass structure, decreased (from 0.288 eV to 0.270 eV) with increasing strontium chloride concentration, indicating a lower defect concentration. The molar refractivity values ranged from 26.82 to 31.79, reflecting the polarizability of the constituent ions. The glasses demonstrated a metallization criterion within the range of 0.332 to 0.384, indicating their promise for applications in the area of nonlinear optical devices.
Graphical Abstract
Spectra of optical absorption for the TBSr glasses.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.