Artificial intelligence for geometry-based feature extraction, analysis and synthesis in artistic images: a survey

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2024-12-21 DOI:10.1007/s10462-024-11051-3
Mridula Vijendran, Jingjing Deng, Shuang Chen, Edmond S. L. Ho, Hubert P. H. Shum
{"title":"Artificial intelligence for geometry-based feature extraction, analysis and synthesis in artistic images: a survey","authors":"Mridula Vijendran,&nbsp;Jingjing Deng,&nbsp;Shuang Chen,&nbsp;Edmond S. L. Ho,&nbsp;Hubert P. H. Shum","doi":"10.1007/s10462-024-11051-3","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial Intelligence significantly enhances the visual art industry by analyzing, identifying and generating digitized artistic images. This review highlights the substantial benefits of integrating geometric data into AI models, addressing challenges such as high inter-class variations, domain gaps, and the separation of style from content by incorporating geometric information. Models not only improve AI-generated graphics synthesis quality, but also effectively distinguish between style and content, utilizing inherent model biases and shared data traits. We explore methods like geometric data extraction from artistic images, the impact on human perception, and its use in discriminative tasks. The review also discusses the potential for improving data quality through innovative annotation techniques and the use of geometric data to enhance model adaptability and output refinement. Overall, incorporating geometric guidance boosts model performance in classification and synthesis tasks, providing crucial insights for future AI applications in the visual arts domain.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11051-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11051-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence significantly enhances the visual art industry by analyzing, identifying and generating digitized artistic images. This review highlights the substantial benefits of integrating geometric data into AI models, addressing challenges such as high inter-class variations, domain gaps, and the separation of style from content by incorporating geometric information. Models not only improve AI-generated graphics synthesis quality, but also effectively distinguish between style and content, utilizing inherent model biases and shared data traits. We explore methods like geometric data extraction from artistic images, the impact on human perception, and its use in discriminative tasks. The review also discusses the potential for improving data quality through innovative annotation techniques and the use of geometric data to enhance model adaptability and output refinement. Overall, incorporating geometric guidance boosts model performance in classification and synthesis tasks, providing crucial insights for future AI applications in the visual arts domain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能通过分析、识别和生成数字化艺术图像,极大地促进了视觉艺术产业的发展。本综述强调了将几何数据整合到人工智能模型中的巨大好处,通过整合几何信息,解决了诸如类间差异大、领域空白以及风格与内容分离等难题。模型不仅能提高人工智能生成的图形合成质量,还能利用固有的模型偏差和共享数据特征,有效区分风格和内容。我们探讨了从艺术图像中提取几何数据的方法、对人类感知的影响及其在判别任务中的应用。综述还讨论了通过创新注释技术提高数据质量的潜力,以及利用几何数据增强模型适应性和输出完善性。总之,结合几何引导可提高模型在分类和合成任务中的性能,为未来视觉艺术领域的人工智能应用提供重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Artificial intelligence for geometry-based feature extraction, analysis and synthesis in artistic images: a survey How the internet of things technology improves agricultural efficiency Models of symbol emergence in communication: a conceptual review and a guide for avoiding local minima Digital phenotypes and digital biomarkers for health and diseases: a systematic review of machine learning approaches utilizing passive non-invasive signals collected via wearable devices and smartphones A survey on deep learning-based automated essay scoring and feedback generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1