Digital phenotypes and digital biomarkers for health and diseases: a systematic review of machine learning approaches utilizing passive non-invasive signals collected via wearable devices and smartphones
Alireza Sameh, Mehrdad Rostami, Mourad Oussalah, Raija Korpelainen, Vahid Farrahi
{"title":"Digital phenotypes and digital biomarkers for health and diseases: a systematic review of machine learning approaches utilizing passive non-invasive signals collected via wearable devices and smartphones","authors":"Alireza Sameh, Mehrdad Rostami, Mourad Oussalah, Raija Korpelainen, Vahid Farrahi","doi":"10.1007/s10462-024-11009-5","DOIUrl":null,"url":null,"abstract":"<div><p>Passive non-invasive sensing signals from wearable devices and smartphones are typically collected continuously without user input. This passive and continuous data collection makes these signals suitable for moment-by-moment monitoring of health-related outcomes, disease diagnosis, and prediction modeling. A growing number of studies have utilized machine learning (ML) approaches to predict and analyze health indicators and diseases using passive non-invasive signals collected via wearable devices and smartphones. This systematic review identified peer-reviewed journal articles utilizing ML approaches for digital phenotyping and measuring digital biomarkers to analyze, screen, identify, and/or predict health-related outcomes using passive non-invasive signals collected from wearable devices or smartphones. PubMed, PubMed with Mesh, Web of Science, Scopus, and IEEE Xplore were searched for peer-reviewed journal articles published up to June 2024, identifying 66 papers. We reviewed the study populations used for data collection, data acquisition details, signal types, data preparation steps, ML approaches used, digital phenotypes and digital biomarkers, and health outcomes and diseases predicted using these ML techniques. Our findings highlight the promising potential for objective tracking of health outcomes and diseases using passive non-invasive signals collected from wearable devices and smartphones with ML approaches for characterization and prediction of a range of health outcomes and diseases, such as stress, seizure, fatigue, depression, and Parkinson’s disease. Future studies should focus on improving the quality of collected data, addressing missing data challenges, providing better documentation on study participants, and sharing the source code of the implemented methods and algorithms, along with their datasets and methods, for reproducibility purposes.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11009-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11009-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Passive non-invasive sensing signals from wearable devices and smartphones are typically collected continuously without user input. This passive and continuous data collection makes these signals suitable for moment-by-moment monitoring of health-related outcomes, disease diagnosis, and prediction modeling. A growing number of studies have utilized machine learning (ML) approaches to predict and analyze health indicators and diseases using passive non-invasive signals collected via wearable devices and smartphones. This systematic review identified peer-reviewed journal articles utilizing ML approaches for digital phenotyping and measuring digital biomarkers to analyze, screen, identify, and/or predict health-related outcomes using passive non-invasive signals collected from wearable devices or smartphones. PubMed, PubMed with Mesh, Web of Science, Scopus, and IEEE Xplore were searched for peer-reviewed journal articles published up to June 2024, identifying 66 papers. We reviewed the study populations used for data collection, data acquisition details, signal types, data preparation steps, ML approaches used, digital phenotypes and digital biomarkers, and health outcomes and diseases predicted using these ML techniques. Our findings highlight the promising potential for objective tracking of health outcomes and diseases using passive non-invasive signals collected from wearable devices and smartphones with ML approaches for characterization and prediction of a range of health outcomes and diseases, such as stress, seizure, fatigue, depression, and Parkinson’s disease. Future studies should focus on improving the quality of collected data, addressing missing data challenges, providing better documentation on study participants, and sharing the source code of the implemented methods and algorithms, along with their datasets and methods, for reproducibility purposes.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.