Improving ZnO Thin Film with CuO Nanorods to Enhance the Application in Lower-Work-Temperature Carbon Monoxide Gas Sensing

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-11-07 DOI:10.1007/s11664-024-11564-1
Yen-Sheng Lin, Yi-Zhe Zhang
{"title":"Improving ZnO Thin Film with CuO Nanorods to Enhance the Application in Lower-Work-Temperature Carbon Monoxide Gas Sensing","authors":"Yen-Sheng Lin,&nbsp;Yi-Zhe Zhang","doi":"10.1007/s11664-024-11564-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, radio frequency (RF) magnetron sputtering was used to deposit ZnO nanofilms and CuO nanorods. Firstly, the sputtering power was adjusted to study the structural porosity changes of ZnO. The oxygen flux and etching power were then adjusted to roughen the surface of the films to induce the optimal distribution of the CuO nanorods on the surface to increase its surface area for gas reaction. The ZnO film packaging process for gas sensing was also completed, mainly by a self-designed gas sensing circuit, at a lower work temperature of 100°C, to conduct sensitivity and response value analysis of CO gas sensing. In addition, X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) were used to analyze the crystallinity and morphology of ZnO, and high-resolution transmission electron microscopy (HRTEM) was used to analyze the interface microstructure of the ZnO/CuO nanorods. The absorbance of ZnO was measured by UV–Vis spectroscopy to indirectly verify the porosity. The results show that after depositing the ZnO film at 200 W, followed by roughening the surface with oxygen flux of 15 sccm and 100 W etching power for 10 min and then depositing the CuO nanorods for 10 s, the completed thin film structure had better CO sensing characteristics, and the highest response value was enhanced about 5% from 0.983 to 1.031. By optimizing the process parameters and incorporating the CuO nanorods, the sensing characteristics of the ZnO thin film were improved and a lower work temperature of 100°C for CO gas reaction was possible.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"310 - 320"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11664-024-11564-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11564-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, radio frequency (RF) magnetron sputtering was used to deposit ZnO nanofilms and CuO nanorods. Firstly, the sputtering power was adjusted to study the structural porosity changes of ZnO. The oxygen flux and etching power were then adjusted to roughen the surface of the films to induce the optimal distribution of the CuO nanorods on the surface to increase its surface area for gas reaction. The ZnO film packaging process for gas sensing was also completed, mainly by a self-designed gas sensing circuit, at a lower work temperature of 100°C, to conduct sensitivity and response value analysis of CO gas sensing. In addition, X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) were used to analyze the crystallinity and morphology of ZnO, and high-resolution transmission electron microscopy (HRTEM) was used to analyze the interface microstructure of the ZnO/CuO nanorods. The absorbance of ZnO was measured by UV–Vis spectroscopy to indirectly verify the porosity. The results show that after depositing the ZnO film at 200 W, followed by roughening the surface with oxygen flux of 15 sccm and 100 W etching power for 10 min and then depositing the CuO nanorods for 10 s, the completed thin film structure had better CO sensing characteristics, and the highest response value was enhanced about 5% from 0.983 to 1.031. By optimizing the process parameters and incorporating the CuO nanorods, the sensing characteristics of the ZnO thin film were improved and a lower work temperature of 100°C for CO gas reaction was possible.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用氧化铜纳米棒改进ZnO薄膜以增强在低工作温度一氧化碳气体传感中的应用
本研究采用射频磁控溅射技术制备ZnO纳米膜和CuO纳米棒。首先,调整溅射功率,研究ZnO的结构孔隙度变化。然后调整氧通量和蚀刻功率,使膜表面变得粗糙,以诱导CuO纳米棒在表面的最佳分布,以增加其气体反应的表面积。在较低的100℃工作温度下,主要通过自行设计的气敏电路完成气敏氧化锌薄膜封装工艺,对CO气敏进行灵敏度和响应值分析。此外,采用x射线衍射(XRD)和场发射扫描电镜(FESEM)分析ZnO的结晶度和形貌,采用高分辨率透射电镜(HRTEM)分析ZnO/CuO纳米棒的界面微观结构。用紫外可见光谱法测定了ZnO的吸光度,间接验证了孔隙度。结果表明,在200 W下沉积ZnO薄膜,然后以15 sccm的氧通量和100 W的刻蚀功率对表面进行10 min的粗化处理,再沉积10 s的CuO纳米棒,完成的薄膜结构具有较好的CO感测特性,最高响应值从0.983提高到1.031,提高了约5%。通过优化工艺参数和加入CuO纳米棒,提高了ZnO薄膜的传感特性,并使CO气体反应的工作温度降低到100℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
In Situ Growth of Nanorod-Assembled SnWO4 via AACVD for ppb Level Xylene Gas Sensor Polymeric Biosensor Development for Electrochemical Analysis of Tartrazine and Methyl Orange Study on the Vibration Mechanism of the Core Components of an HVDC Filter Capacitor Enhanced Thermal Sensitivity of Graphite Paint-Based Flexible Thermocouple Designing Novel Photosensitizers Based on Pyridoquinazolinone and Its TiO2-Adsorbed Complexes with Efficient Photovoltaic Performance in DSSCs: A DFT Insight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1