Perforated imprinting on high moisture meat analogue confers long range mechanical anisotropy resembling meat cuts

IF 6.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY NPJ Science of Food Pub Date : 2024-12-20 DOI:10.1038/s41538-024-00344-0
Xuanming Lou, Jiahao Wang, Leng Gek Kwang, Hanzhang Zhou, Francesca Yi Teng Ong, Shengyong Ng, Hanry Yu
{"title":"Perforated imprinting on high moisture meat analogue confers long range mechanical anisotropy resembling meat cuts","authors":"Xuanming Lou, Jiahao Wang, Leng Gek Kwang, Hanzhang Zhou, Francesca Yi Teng Ong, Shengyong Ng, Hanry Yu","doi":"10.1038/s41538-024-00344-0","DOIUrl":null,"url":null,"abstract":"Meat cuts, when cooked and masticated, separate into fibrous structures because of the long-range mechanical anisotropy (LMA) exhibited by muscle fascicles, which is not fully recapitulated in alternative proteins produced using molecular alignment technology like high moisture extrusion. We have developed a scalable perforated micro-imprinting technology to greatly enhance LMA in high moisture meat analogue (HMMA). By imprinting 1 mm thick HMMA sheets with perforated patterns (optimized by AI), we observed up to 5 × more anisotropic separation of fibrous structures in a one-dimensional pulling LMA analysis, to match the fibrousness of the cooked chicken breast, duck breast, pork loin and beef loin. We stacked and bound imprinted sheets with transglutaminase (TG) to produce imprinted whole-cuts. Controlling fiber separation in the imprinted cuts achieved hardness ranging from 6578 g to 18467 g (2 cm × 2 cm × 1 cm, 50% strain), which matched meats from different species. Imprinted cuts improved meat-like fiber separation over HMMA when masticated, measured by Euclidean distances (0.057 and 0.106 respectively) to animal meat cuts on image features. In sensory evaluation, imprinted cuts improved consumer acceptance by 33.3% and meat-like fibrousness by 20%, by significantly enhancing the HMMA appearance, texture, and mouthfeel.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-14"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-024-00344-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41538-024-00344-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Meat cuts, when cooked and masticated, separate into fibrous structures because of the long-range mechanical anisotropy (LMA) exhibited by muscle fascicles, which is not fully recapitulated in alternative proteins produced using molecular alignment technology like high moisture extrusion. We have developed a scalable perforated micro-imprinting technology to greatly enhance LMA in high moisture meat analogue (HMMA). By imprinting 1 mm thick HMMA sheets with perforated patterns (optimized by AI), we observed up to 5 × more anisotropic separation of fibrous structures in a one-dimensional pulling LMA analysis, to match the fibrousness of the cooked chicken breast, duck breast, pork loin and beef loin. We stacked and bound imprinted sheets with transglutaminase (TG) to produce imprinted whole-cuts. Controlling fiber separation in the imprinted cuts achieved hardness ranging from 6578 g to 18467 g (2 cm × 2 cm × 1 cm, 50% strain), which matched meats from different species. Imprinted cuts improved meat-like fiber separation over HMMA when masticated, measured by Euclidean distances (0.057 and 0.106 respectively) to animal meat cuts on image features. In sensory evaluation, imprinted cuts improved consumer acceptance by 33.3% and meat-like fibrousness by 20%, by significantly enhancing the HMMA appearance, texture, and mouthfeel.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Science of Food
NPJ Science of Food FOOD SCIENCE & TECHNOLOGY-
CiteScore
7.50
自引率
1.60%
发文量
53
期刊介绍: npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.
期刊最新文献
Exploring cost reduction strategies for serum free media development Perforated imprinting on high moisture meat analogue confers long range mechanical anisotropy resembling meat cuts Vitamin A stability during storage of fortified gari produced using different fortification strategies Bioconversion of aflatoxin-contaminated groundnut press cake by larvae of black soldier fly Hermetia illucens results in a complete mass balance for aflatoxin B1 Dietary methionine supplementation improves cognitive dysfunction associated with transsulfuration pathway upregulation in subacute aging mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1