Nanoscale Liposomes Co-Loaded with Irinotecan Hydrochloride and Thalidomide for Colorectal Cancer Synergistic Therapy.

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Macromolecular bioscience Pub Date : 2024-12-20 DOI:10.1002/mabi.202400478
Xuanrong Sun, Yubei Gong, Ting Xie, Zixi Fu, Dongze Lu, Bin Wei, Yue Cai, Wenlong Yao, Jie Shen
{"title":"Nanoscale Liposomes Co-Loaded with Irinotecan Hydrochloride and Thalidomide for Colorectal Cancer Synergistic Therapy.","authors":"Xuanrong Sun, Yubei Gong, Ting Xie, Zixi Fu, Dongze Lu, Bin Wei, Yue Cai, Wenlong Yao, Jie Shen","doi":"10.1002/mabi.202400478","DOIUrl":null,"url":null,"abstract":"<p><p>Irinotecan hydrochloride (CPT-11) is one of the first-line drugs used in the clinical treatment of colorectal cancer (CRC). However, the concomitant adverse effect of delayed diarrhea has hindered its clinical use. CPT-11 combined with Thalidomide (THA) therapy is considered a palliative strategy. To optimize the synergistic treatment of CPT-11 and THA, co-loaded liposomes are constructed using cholesterol, lecithin, and 1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine-Poly(ethylene glycol) (DSPE-PEG) as the \"immune and gut microbiota regulator.\" The co-loaded liposomes, which possess good stability, are prepared by the solvent injection method. After the treatment with the co-loaded liposomes, tumor growth in CRC-bearing mice is significantly inhibited. In particular, the co-loaded liposomes demonstrate favorable diarrhea-relieving effects through the modulation of inflammatory cytokines and gut microbiota. These findings suggest that the co-loaded liposomes have great potential as a combined drug-delivery platform for CRC therapy.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400478"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400478","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Irinotecan hydrochloride (CPT-11) is one of the first-line drugs used in the clinical treatment of colorectal cancer (CRC). However, the concomitant adverse effect of delayed diarrhea has hindered its clinical use. CPT-11 combined with Thalidomide (THA) therapy is considered a palliative strategy. To optimize the synergistic treatment of CPT-11 and THA, co-loaded liposomes are constructed using cholesterol, lecithin, and 1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine-Poly(ethylene glycol) (DSPE-PEG) as the "immune and gut microbiota regulator." The co-loaded liposomes, which possess good stability, are prepared by the solvent injection method. After the treatment with the co-loaded liposomes, tumor growth in CRC-bearing mice is significantly inhibited. In particular, the co-loaded liposomes demonstrate favorable diarrhea-relieving effects through the modulation of inflammatory cytokines and gut microbiota. These findings suggest that the co-loaded liposomes have great potential as a combined drug-delivery platform for CRC therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
期刊最新文献
Polymeric Microneedles for Transdermal Delivery of Human Placental Tissue for the Treatment of Osteoarthritis. Nanoscale Liposomes Co-Loaded with Irinotecan Hydrochloride and Thalidomide for Colorectal Cancer Synergistic Therapy. Masthead: Macromol. Biosci. 12/2024 Biochemical Signal-Induced Supramolecular Hydrogelation for Structured Free-Standing Soft Material Formation An Alginate/Gelatin Injectable Hydrogel Containing Au Nanoparticles for Transplantation of Embryonic Mouse Cardiomyocytes in Myocardial Repair.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1