Krista L C van Rest, Stephen T Jeffrey, Lisa Kaestner, Aksel Gudde, Anel Oosthuysen, Jan-Paul W R Roovers, Zeliha Guler
{"title":"Evaluation of Electrospun Poly-4-Hydroxybutyrate as Biofunctional and Degradable Scaffold for Pelvic Organ Prolapse in a Vaginal Sheep Model.","authors":"Krista L C van Rest, Stephen T Jeffrey, Lisa Kaestner, Aksel Gudde, Anel Oosthuysen, Jan-Paul W R Roovers, Zeliha Guler","doi":"10.1002/mabi.202400412","DOIUrl":null,"url":null,"abstract":"<p><p>Pelvic organ prolapse (POP) affects many women, especially after menopause. POP occurs due to the descent of weakened supportive tissue. Current prolapse surgeries have high failure rates, due to disturbed wound healing caused by lower tissue regeneration and estrogen depletion. Absorbable poly-4-hydroxybutyrate (P4HB) knit implants exhibited improved cell and tissue response leading to less complications from prolapse surgery. This study aims to enhance wound healing and improve surgical outcomes by using an electrospun (ES) P4HB scaffold (ES P4HB) that emulates natural tissue structure. Further 17β-estradiol (E2)-a prominent wound healing factor-is incorporated into the scaffold (ES P4HB-E2). Parous Dohne Merino sheep underwent posterior vaginal wall implantation of either P4HB (n = 6) or 17β-estradiol relasing P4HB-E2 (n = 6) scaffolds, or underwent native tissue repair (NTR) (n = 4). Vaginal explants were compared for short-term host response in terms of gross necropsy, histomorphology, biomechanics, tissue-integration, and degradation of P4HB at 3-months post-implantation. Both scaffolds show promising results with enhanced mechanical properties and increased macrophage infiltration compared to NTR, but without differences between scaffolds. Thus, it seems electrospun P4HB scaffolds already improve tissue integration and healing. Further long-term studies are needed before these scaffolds can be used in clinical practice.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400412"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pelvic organ prolapse (POP) affects many women, especially after menopause. POP occurs due to the descent of weakened supportive tissue. Current prolapse surgeries have high failure rates, due to disturbed wound healing caused by lower tissue regeneration and estrogen depletion. Absorbable poly-4-hydroxybutyrate (P4HB) knit implants exhibited improved cell and tissue response leading to less complications from prolapse surgery. This study aims to enhance wound healing and improve surgical outcomes by using an electrospun (ES) P4HB scaffold (ES P4HB) that emulates natural tissue structure. Further 17β-estradiol (E2)-a prominent wound healing factor-is incorporated into the scaffold (ES P4HB-E2). Parous Dohne Merino sheep underwent posterior vaginal wall implantation of either P4HB (n = 6) or 17β-estradiol relasing P4HB-E2 (n = 6) scaffolds, or underwent native tissue repair (NTR) (n = 4). Vaginal explants were compared for short-term host response in terms of gross necropsy, histomorphology, biomechanics, tissue-integration, and degradation of P4HB at 3-months post-implantation. Both scaffolds show promising results with enhanced mechanical properties and increased macrophage infiltration compared to NTR, but without differences between scaffolds. Thus, it seems electrospun P4HB scaffolds already improve tissue integration and healing. Further long-term studies are needed before these scaffolds can be used in clinical practice.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.