NCOA4 linked to endothelial cell ferritinophagy and ferroptosis:a key regulator aggravate aortic endothelial inflammation and atherosclerosis.

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Redox Biology Pub Date : 2024-12-12 DOI:10.1016/j.redox.2024.103465
Li Zhu, Zijian Liu, Jiahui Liu, Zhenglong Li, Youli Bao, Xin Sun, Wenchen Zhao, An Zhou, Hongfei Wu
{"title":"NCOA4 linked to endothelial cell ferritinophagy and ferroptosis:a key regulator aggravate aortic endothelial inflammation and atherosclerosis.","authors":"Li Zhu, Zijian Liu, Jiahui Liu, Zhenglong Li, Youli Bao, Xin Sun, Wenchen Zhao, An Zhou, Hongfei Wu","doi":"10.1016/j.redox.2024.103465","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis (AS) is associated with a high incidence of cardiovascular events, yet the mechanisms underlying this association remain unclear. Our previous study found that Atherosclerotic endothelial injury is closely associated with ferroptosis in ApoE<sup>-/-</sup> mice. Ferroptosis is a novel mode of cell death induced by decreased antioxidant capacity of the organism and accumulation of reactive oxygen species. Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy is an important regulator of sudden ferroptosis in cells. However, the role of NCOA4 in AS and the exact mechanism by which it regulates the ferritinophagy response remain unclear. Herein, we report that NCOA4 expression is elevated in ApoE<sup>-/-</sup> mice and endothelial cells and is significantly correlated with AS. NCOA4 expression promoted ferroptosis, and was positively correlated with ferritinophagy response. Mechanistically, our findings indicate that LOX-1 is a key upstream target that influences the function of NCOA4. The specific pathway is related to the activation of cGAS-STING signaling to upregulate NCOA4 expression. Moreover, our findings demonstrate the \"Gualou-Xiebai\" herb pair can regulate LOX-1 to inhibit ferroptosis. Collectively, our results provide evidence of a connection between NCOA4-mediated promotion of AS and suggest that targeting upstream molecules regulating NCOA4 could be a potential therapy for AS.</p>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"79 ","pages":"103465"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.redox.2024.103465","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerosis (AS) is associated with a high incidence of cardiovascular events, yet the mechanisms underlying this association remain unclear. Our previous study found that Atherosclerotic endothelial injury is closely associated with ferroptosis in ApoE-/- mice. Ferroptosis is a novel mode of cell death induced by decreased antioxidant capacity of the organism and accumulation of reactive oxygen species. Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy is an important regulator of sudden ferroptosis in cells. However, the role of NCOA4 in AS and the exact mechanism by which it regulates the ferritinophagy response remain unclear. Herein, we report that NCOA4 expression is elevated in ApoE-/- mice and endothelial cells and is significantly correlated with AS. NCOA4 expression promoted ferroptosis, and was positively correlated with ferritinophagy response. Mechanistically, our findings indicate that LOX-1 is a key upstream target that influences the function of NCOA4. The specific pathway is related to the activation of cGAS-STING signaling to upregulate NCOA4 expression. Moreover, our findings demonstrate the "Gualou-Xiebai" herb pair can regulate LOX-1 to inhibit ferroptosis. Collectively, our results provide evidence of a connection between NCOA4-mediated promotion of AS and suggest that targeting upstream molecules regulating NCOA4 could be a potential therapy for AS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
期刊最新文献
Machine learning and SHAP value interpretation for predicting comorbidity of cardiovascular disease and cancer with dietary antioxidants. Sarcopenic obesity is attenuated by E-syt1 inhibition via improving skeletal muscle mitochondrial function Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway. Macropinocytosis enhances foamy macrophage formation and cholesterol crystallization to activate NLRP3 inflammasome after spinal cord injury. NCOA4 linked to endothelial cell ferritinophagy and ferroptosis:a key regulator aggravate aortic endothelial inflammation and atherosclerosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1