A genus-specific R2R3 MYB transcription factor, CsMYB34, regulates galloylated catechin biosynthesis in Camellia sinensis.

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-12-15 DOI:10.1016/j.plaphy.2024.109401
Jianmei Xu, Jingyi Li, Yihao Liu, Peng Zheng, Shaoqun Liu, Binmei Sun
{"title":"A genus-specific R2R3 MYB transcription factor, CsMYB34, regulates galloylated catechin biosynthesis in Camellia sinensis.","authors":"Jianmei Xu, Jingyi Li, Yihao Liu, Peng Zheng, Shaoqun Liu, Binmei Sun","doi":"10.1016/j.plaphy.2024.109401","DOIUrl":null,"url":null,"abstract":"<p><p>Galloylated catechins are the dominant polyphenols in Camellia sinensis (L.) O. Kuntze. The mechanisms responsible for accumulation of these specialized metabolites in tea plants remains unclear. This paper presents an extended member of subgroup 5 of transcription factors R2R3-MYB, CsMYB34, as a critical gene specifically regulating galloylated catechin biosynthesis. CsMYB34 has a TT2-type motif [VIRTKATRCSKVFIP]. Its transcription levels were positively correlated with galloylated catechin content in 19 tea varieties, with correlation coefficients ≥0.79. Suppression of CsMYB34 expression caused a significant decrease in galloylated catechin content, as well as reduced expression levels of the key galloylated catechin biosynthesis gene CsSCPL4. Yeast one-hybrid (Y1H), electrophoretic mobile shift assay (EMSA) and dual-luciferase reporter system (DLR) showed that CsMYB34 interacts directly with the promoter region of CsSCPL4, thereby upregulating its transcription. This research indicates that the CsMYB34 transcription factor selectively modulates the biosynthetic pathway of galloylated catechins, thereby offering a plausible rationale for the observed elevated levels of these compounds in tea leaves.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109401"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109401","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Galloylated catechins are the dominant polyphenols in Camellia sinensis (L.) O. Kuntze. The mechanisms responsible for accumulation of these specialized metabolites in tea plants remains unclear. This paper presents an extended member of subgroup 5 of transcription factors R2R3-MYB, CsMYB34, as a critical gene specifically regulating galloylated catechin biosynthesis. CsMYB34 has a TT2-type motif [VIRTKATRCSKVFIP]. Its transcription levels were positively correlated with galloylated catechin content in 19 tea varieties, with correlation coefficients ≥0.79. Suppression of CsMYB34 expression caused a significant decrease in galloylated catechin content, as well as reduced expression levels of the key galloylated catechin biosynthesis gene CsSCPL4. Yeast one-hybrid (Y1H), electrophoretic mobile shift assay (EMSA) and dual-luciferase reporter system (DLR) showed that CsMYB34 interacts directly with the promoter region of CsSCPL4, thereby upregulating its transcription. This research indicates that the CsMYB34 transcription factor selectively modulates the biosynthetic pathway of galloylated catechins, thereby offering a plausible rationale for the observed elevated levels of these compounds in tea leaves.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
A genus-specific R2R3 MYB transcription factor, CsMYB34, regulates galloylated catechin biosynthesis in Camellia sinensis. Comparative transcriptome analysis and functional verification revealed that GhSAP6 negatively regulates salt tolerance in upland cotton. The inhibition effect of high temperature stress on potato tuber skin coloring mainly occurred in the belowground part of the plant. Transcriptome analysis of tree peony under high temperature treatment and functional verification of PsDREB2A gene. 1+1<2: Combined effect of low temperature stress and salt stress on Sesuvium portulacastrum L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1