{"title":"To Acquire or Not to Acquire: Evaluating Compressive Sensing for Raman Spectroscopy in Biology","authors":"Piyush Raj, Lintong Wu, Jeong Hee Kim, Raj Bhatt, Kristine Glunde, Ishan Barman","doi":"10.1021/acssensors.4c01732","DOIUrl":null,"url":null,"abstract":"Raman spectroscopy has revolutionized the field of chemical biology by providing detailed chemical and compositional information with minimal sample preparation. Despite its advantages, the technique suffers from low throughput due to the weak Raman effect, necessitating long acquisition times and expensive equipment. This limitation is particularly acute in time-sensitive applications like bioprocess monitoring and dynamic studies. Compressive sensing offers a promising solution by reducing the burden on measurement hardware, lowering costs, and decreasing measurement times. It allows for the collection of sparse data, which can be computationally reconstructed later. This paper explores the practical application of compressive sensing in spontaneous Raman spectroscopy across various biological samples. We demonstrate its benefits in scenarios requiring portable hardware, rapid acquisition, and minimal storage, such as skin hydration prediction and cellular studies involving drug molecules. Our findings highlight the potential of compressive sensing to overcome traditional limitations of Raman spectroscopy, paving the way for broader adoption in biological research and clinical diagnostics.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"78 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c01732","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Raman spectroscopy has revolutionized the field of chemical biology by providing detailed chemical and compositional information with minimal sample preparation. Despite its advantages, the technique suffers from low throughput due to the weak Raman effect, necessitating long acquisition times and expensive equipment. This limitation is particularly acute in time-sensitive applications like bioprocess monitoring and dynamic studies. Compressive sensing offers a promising solution by reducing the burden on measurement hardware, lowering costs, and decreasing measurement times. It allows for the collection of sparse data, which can be computationally reconstructed later. This paper explores the practical application of compressive sensing in spontaneous Raman spectroscopy across various biological samples. We demonstrate its benefits in scenarios requiring portable hardware, rapid acquisition, and minimal storage, such as skin hydration prediction and cellular studies involving drug molecules. Our findings highlight the potential of compressive sensing to overcome traditional limitations of Raman spectroscopy, paving the way for broader adoption in biological research and clinical diagnostics.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.