Kinetic and Mechanistic Investigation of L-Phenylalanine Oxidation by Alkaline Cu(III) Periodate in CPC Micellar Medium

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Journal of Physical Organic Chemistry Pub Date : 2024-11-11 DOI:10.1002/poc.4669
Abhishek Srivastava, Neetu Srivastava, Rajeev Kumar Dohare
{"title":"Kinetic and Mechanistic Investigation of L-Phenylalanine Oxidation by Alkaline Cu(III) Periodate in CPC Micellar Medium","authors":"Abhishek Srivastava,&nbsp;Neetu Srivastava,&nbsp;Rajeev Kumar Dohare","doi":"10.1002/poc.4669","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Amino acid oxidation is fascinating because different oxidants produce diverse compounds. No research has examined how metal catalysts affect amino acid oxidation by diperiodatocuprate (III) (DPC) in micellar environments. This research is crucial to understanding amino acids in redox processes and identifying active species of Ru(III) and DPC. The study will evaluate how cationic surfactant affects Ru(III)-facilitated L-phenylalanine (L-Pheala) oxidation utilizing DPC in an alkaline medium. The reaction's advancement has been assessed employing the pseudo-first-order condition as a gauge for [OH<sup>−</sup>], [DPC], ionic strength, [L-Pheala], [Ru(III)], [IO<sub>4</sub><sup>−</sup>], [Surfactant], and temperature. L-Pheala and DPC interact stoichiometrically in a ratio of 1:4. Across the spectrum of concentrations examined, the reported reaction reflects less than unit order kinematics in relation to both [L-Pheala] (0.61 in the aqueous medium and 0.58 in the CPC micellar medium) and [OH<sup>−</sup>] (0.47 in the aqueous medium and 0.51 in the CPC micellar medium), first-order reliance on the [DPC] and [Ru(III)], and negative fractional-order for [IO<sub>4</sub><sup>−</sup>] (−0.54 in the aqueous medium and −0.56 in the CPC micellar medium). A zero salt effect is suggested by the observed constancy in oxidation rate with the inclusion of electrolytes. The oxidation rate is significantly enhanced by Ru(III) solution (as a catalyst) at ppm concentration. Cetylpyridinium chloride (CPC) micellar media facilitate an additional enhancement (four times) in the rate of the reaction. CPC thus exhibits an excellent compatibility with Ru(III) for the L-Pheala oxidation using (DPC).</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4669","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Amino acid oxidation is fascinating because different oxidants produce diverse compounds. No research has examined how metal catalysts affect amino acid oxidation by diperiodatocuprate (III) (DPC) in micellar environments. This research is crucial to understanding amino acids in redox processes and identifying active species of Ru(III) and DPC. The study will evaluate how cationic surfactant affects Ru(III)-facilitated L-phenylalanine (L-Pheala) oxidation utilizing DPC in an alkaline medium. The reaction's advancement has been assessed employing the pseudo-first-order condition as a gauge for [OH], [DPC], ionic strength, [L-Pheala], [Ru(III)], [IO4], [Surfactant], and temperature. L-Pheala and DPC interact stoichiometrically in a ratio of 1:4. Across the spectrum of concentrations examined, the reported reaction reflects less than unit order kinematics in relation to both [L-Pheala] (0.61 in the aqueous medium and 0.58 in the CPC micellar medium) and [OH] (0.47 in the aqueous medium and 0.51 in the CPC micellar medium), first-order reliance on the [DPC] and [Ru(III)], and negative fractional-order for [IO4] (−0.54 in the aqueous medium and −0.56 in the CPC micellar medium). A zero salt effect is suggested by the observed constancy in oxidation rate with the inclusion of electrolytes. The oxidation rate is significantly enhanced by Ru(III) solution (as a catalyst) at ppm concentration. Cetylpyridinium chloride (CPC) micellar media facilitate an additional enhancement (four times) in the rate of the reaction. CPC thus exhibits an excellent compatibility with Ru(III) for the L-Pheala oxidation using (DPC).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
期刊最新文献
Issue Information Counter-Anion-Dependent Optical Properties of Cationic N22-Methylated Chlorophyll-a Derivatives Issue Information Cover Image Kinetic and Mechanistic Investigation of L-Phenylalanine Oxidation by Alkaline Cu(III) Periodate in CPC Micellar Medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1