Counter-Anion-Dependent Optical Properties of Cationic N22-Methylated Chlorophyll-a Derivatives

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Journal of Physical Organic Chemistry Pub Date : 2024-12-07 DOI:10.1002/poc.4676
Riko Ataka, Yuichi Kitagawa, Hitoshi Tamiaki
{"title":"Counter-Anion-Dependent Optical Properties of Cationic N22-Methylated Chlorophyll-a Derivatives","authors":"Riko Ataka,&nbsp;Yuichi Kitagawa,&nbsp;Hitoshi Tamiaki","doi":"10.1002/poc.4676","DOIUrl":null,"url":null,"abstract":"<p>Methyl N22-methylpyropheophorbides-<i>a</i> with chloride or hexafluorophosphate were prepared by chemically modifying chlorophyll-<i>a</i>. The resulting product composed of cationic <i>N</i>-methylated chlorin and chloride anion exhibited visible absorption and fluorescence emission maxima in chloroform at longer wavelengths than those with hexafluorophosphate. Both the absorption and emission spectra of the former were hypsochromically shifted by change of the solvent from chloroform to methanol to give almost the same corresponding spectra of the latter independent of solvents. The apparent counter-anion dependency in chloroform and the specific solvent dependency in the <i>N</i>-methyl-chlorin with chloride are ascribable to the weak solvation of a hard chloride anion over soft hexafluorophosphate in chloroform and strong electrostatic interaction of the cationic chlorin with a chloride anion over hexafluorophosphate in chloroform as well as well solvation of both the anions in methanol. In addition, less emission of <i>N</i>-methyl-chlorin with chloride in chloroform would be due to partial fluorescence quenching based on the heavy atom effect of the adjacent chloride anion.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.4676","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4676","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Methyl N22-methylpyropheophorbides-a with chloride or hexafluorophosphate were prepared by chemically modifying chlorophyll-a. The resulting product composed of cationic N-methylated chlorin and chloride anion exhibited visible absorption and fluorescence emission maxima in chloroform at longer wavelengths than those with hexafluorophosphate. Both the absorption and emission spectra of the former were hypsochromically shifted by change of the solvent from chloroform to methanol to give almost the same corresponding spectra of the latter independent of solvents. The apparent counter-anion dependency in chloroform and the specific solvent dependency in the N-methyl-chlorin with chloride are ascribable to the weak solvation of a hard chloride anion over soft hexafluorophosphate in chloroform and strong electrostatic interaction of the cationic chlorin with a chloride anion over hexafluorophosphate in chloroform as well as well solvation of both the anions in methanol. In addition, less emission of N-methyl-chlorin with chloride in chloroform would be due to partial fluorescence quenching based on the heavy atom effect of the adjacent chloride anion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阳离子 N22 甲基化叶绿素-a 衍生物的反阴离子光学特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
期刊最新文献
Issue Information Counter-Anion-Dependent Optical Properties of Cationic N22-Methylated Chlorophyll-a Derivatives Issue Information Cover Image Kinetic and Mechanistic Investigation of L-Phenylalanine Oxidation by Alkaline Cu(III) Periodate in CPC Micellar Medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1