The Cleavage of RNA Model Compounds: The Interplay Between the Nucleophile and the Leaving Group

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Journal of Physical Organic Chemistry Pub Date : 2024-10-09 DOI:10.1002/poc.4664
Jasmin I. Koski, Emilia Poijärvi, Anne Tulisalo, Heidi Korhonen, Satu Mikkola
{"title":"The Cleavage of RNA Model Compounds: The Interplay Between the Nucleophile and the Leaving Group","authors":"Jasmin I. Koski,&nbsp;Emilia Poijärvi,&nbsp;Anne Tulisalo,&nbsp;Heidi Korhonen,&nbsp;Satu Mikkola","doi":"10.1002/poc.4664","DOIUrl":null,"url":null,"abstract":"<p>Hydrolytic reactions of phosphodiester bonds of RNA have been extensively studied over several decades. Information on the factors that affect the reactivity of phosphodiester bonds in biomolecules is important for the development of new nucleic acid-related therapeutics. Furthermore, the development of artificial nucleases requires efficient catalytic entities, and rational design of catalysts requires detailed understanding of the catalytic mechanisms. In the present article, we concentrate on the interplay between the nucleophile and leaving group both in the absence and in the presence of metal ion catalysts. The effect of the nucleophile on the reactivity of RNA model compounds has been studied with 2-hydroxypropyl and uridine 3′-aryl phosphates as well as with bis-(<i>p</i>-nitrophenyl)phosphate as substrates. pH-rate profiles for three different 2-hydroxypropyl arylphosphates were compared with those obtained with a uridine 3′-alkyl and aryl phosphates. The observations are discussed in terms of the relative goodness/poorness of the nucleophile and the leaving group. Metal complex-dependent reactions were studied in the presence of well-known and robust CuTerPy and CuBiPy complexes. The results show that CuTerPy and CuBiPy favour different types of phosphodiesters as substrates, depending on the properties of the nucleophile and leaving group, and suggest that the complexes utilize different catalysis mechanisms, which may depend also on the structure of the substrate. The results obtained further the understanding on the basic principles of metal complex-promoted cleavage of RNA and model compounds, help to assess the relevance of data obtained with model compounds and support the design of artificial enzymes for phosphodiester cleavage.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.4664","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4664","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrolytic reactions of phosphodiester bonds of RNA have been extensively studied over several decades. Information on the factors that affect the reactivity of phosphodiester bonds in biomolecules is important for the development of new nucleic acid-related therapeutics. Furthermore, the development of artificial nucleases requires efficient catalytic entities, and rational design of catalysts requires detailed understanding of the catalytic mechanisms. In the present article, we concentrate on the interplay between the nucleophile and leaving group both in the absence and in the presence of metal ion catalysts. The effect of the nucleophile on the reactivity of RNA model compounds has been studied with 2-hydroxypropyl and uridine 3′-aryl phosphates as well as with bis-(p-nitrophenyl)phosphate as substrates. pH-rate profiles for three different 2-hydroxypropyl arylphosphates were compared with those obtained with a uridine 3′-alkyl and aryl phosphates. The observations are discussed in terms of the relative goodness/poorness of the nucleophile and the leaving group. Metal complex-dependent reactions were studied in the presence of well-known and robust CuTerPy and CuBiPy complexes. The results show that CuTerPy and CuBiPy favour different types of phosphodiesters as substrates, depending on the properties of the nucleophile and leaving group, and suggest that the complexes utilize different catalysis mechanisms, which may depend also on the structure of the substrate. The results obtained further the understanding on the basic principles of metal complex-promoted cleavage of RNA and model compounds, help to assess the relevance of data obtained with model compounds and support the design of artificial enzymes for phosphodiester cleavage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNA 模型化合物的裂解:亲核剂与离去基团之间的相互作用
核糖核酸磷酸二酯键的水解反应已经被广泛研究了几十年。影响生物分子中磷酸二酯键反应性的因素的信息对于开发新的核酸相关治疗方法是重要的。此外,人工核酸酶的开发需要高效的催化实体,而催化剂的合理设计需要对催化机理有详细的了解。在本文中,我们集中讨论了在没有和有金属离子催化剂的情况下亲核试剂和离去基团之间的相互作用。以2-羟丙基和尿苷3′-芳基磷酸以及双(对硝基苯)磷酸为底物,研究了亲核试剂对RNA模型化合物反应性的影响。将三种不同的2-羟丙基芳基磷酸与尿苷3′-烷基和芳基磷酸所得的ph值进行了比较。根据亲核试剂和离去基的相对优劣来讨论观察结果。研究了金属配合物依赖性反应中已知的强健CuTerPy和CuBiPy配合物的存在。结果表明CuTerPy和CuBiPy支持不同类型的磷酸二酯作为底物,这取决于亲核试剂和离去基的性质,并表明配合物利用不同的催化机制,这也可能取决于底物的结构。这些结果进一步了解了金属配合物促进RNA和模型化合物切割的基本原理,有助于评估所获得数据与模型化合物的相关性,并为磷酸二酯切割人工酶的设计提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
期刊最新文献
Issue Information Counter-Anion-Dependent Optical Properties of Cationic N22-Methylated Chlorophyll-a Derivatives Issue Information Cover Image Kinetic and Mechanistic Investigation of L-Phenylalanine Oxidation by Alkaline Cu(III) Periodate in CPC Micellar Medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1