Controls on glacial kettle morphology

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Earth Surface Processes and Landforms Pub Date : 2024-11-20 DOI:10.1002/esp.6030
Jillian S. Prescott, Lucas K. Zoet, Dougal D. Hansen, Shanti B. Penprase, J. Elmo Rawling III
{"title":"Controls on glacial kettle morphology","authors":"Jillian S. Prescott,&nbsp;Lucas K. Zoet,&nbsp;Dougal D. Hansen,&nbsp;Shanti B. Penprase,&nbsp;J. Elmo Rawling III","doi":"10.1002/esp.6030","DOIUrl":null,"url":null,"abstract":"<p>Glacial kettles are surficial depressions that form in formerly glaciated terrain when buried stagnant ice melts within pro-glacial sediments, often deposited by meltwater streams. Kettles, like other glacial landforms, provide insight into the impact of climate on landscape evolution, such as the extent and timing of glaciations. The geometry of kettle features is variable, but existing theory does not explain the range of observed morphologies. Our study aims to establish a quantitative relationship between the depth of ice burial and the resulting morphology of terrain collapse in kettle depressions. To do so, we simulated kettle formation in the laboratory by burying ice spheres of four sizes in well-sorted coarse sand at four different depths. As the spheres melt at room temperature, a glacial kettle analog forms at the surface. We scanned the resulting kettle topography with a portable LiDAR scanner to produce 3D digital elevation models of each depression, from which we measured each depression's depth and width and, in one instance, the time series of kettle formation. Using this data, we quantified the relationship between the sphere diameter, burial depth and resulting dimensions of the kettle by developing a set of equations, which we then applied to full-scale features. Our results indicate that ice burial deeper than one sphere diameter corresponds to a decrease in depression depth and an increase in depression width. This application offers insight into the interdependence of ice burial depth and kettle geometry.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"49 15","pages":"5244-5253"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.6030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.6030","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Glacial kettles are surficial depressions that form in formerly glaciated terrain when buried stagnant ice melts within pro-glacial sediments, often deposited by meltwater streams. Kettles, like other glacial landforms, provide insight into the impact of climate on landscape evolution, such as the extent and timing of glaciations. The geometry of kettle features is variable, but existing theory does not explain the range of observed morphologies. Our study aims to establish a quantitative relationship between the depth of ice burial and the resulting morphology of terrain collapse in kettle depressions. To do so, we simulated kettle formation in the laboratory by burying ice spheres of four sizes in well-sorted coarse sand at four different depths. As the spheres melt at room temperature, a glacial kettle analog forms at the surface. We scanned the resulting kettle topography with a portable LiDAR scanner to produce 3D digital elevation models of each depression, from which we measured each depression's depth and width and, in one instance, the time series of kettle formation. Using this data, we quantified the relationship between the sphere diameter, burial depth and resulting dimensions of the kettle by developing a set of equations, which we then applied to full-scale features. Our results indicate that ice burial deeper than one sphere diameter corresponds to a decrease in depression depth and an increase in depression width. This application offers insight into the interdependence of ice burial depth and kettle geometry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冰川水壶形态的控制因素
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
期刊最新文献
Issue Information Neogene drainage evolution of SW Anatolia (Türkiye): Integration of morphotectonics, drainage and denudation analyses Predicting flow resistance in rough-bed rivers from topographic roughness: Review and open questions Assessing proxy methods for measuring bedrock erodibility in fluvial impact erosion Controls on glacial kettle morphology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1