Damage evolution characteristics of freeze–thaw rock combined with CT image and deep learning technology

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2024-12-23 DOI:10.1007/s10064-024-04010-3
Hui Liu, Xinyue Dai, Gengshe Yang, Yanjun Shen, Pengzhi Pan, Jiami Xi, Borong Li, Bo Liang, Yao Wei, Huiqi Huang
{"title":"Damage evolution characteristics of freeze–thaw rock combined with CT image and deep learning technology","authors":"Hui Liu,&nbsp;Xinyue Dai,&nbsp;Gengshe Yang,&nbsp;Yanjun Shen,&nbsp;Pengzhi Pan,&nbsp;Jiami Xi,&nbsp;Borong Li,&nbsp;Bo Liang,&nbsp;Yao Wei,&nbsp;Huiqi Huang","doi":"10.1007/s10064-024-04010-3","DOIUrl":null,"url":null,"abstract":"<div><p>The surrounding rock of tunnel engineering in an alpine mountainous environment is prone to frequent freeze–thaw action due to fissure water and temperature differential, which leads to crack propagation and even failure in rock. Freezing sandstone CT damage-free scanning studies were conducted. Based on deep learning theory, the U-Net network technique is utilized to naturally merge high-resolution properties of frozen rock CT images in the shrinking path with low-resolution characteristics in the expansion path. Intelligent detection of freezing rock fissures and geometric information parameters at the pixel level has been accomplished. The primary fracture structure and its parameters of the sandstone with natural damage during the freeze–thaw process are obtained, and the pixel-level intelligent identification of the meso-structure and geometric information parameters of the freeze–thaw rock fracture is realized. This justifies the classification of naturally cracked rock under load and freeze–thaw as a discrete time-dimensional evolution system. The dynamic process and mechanical characteristics of meso-damage propagation of naturally fractured rock under freeze–thaw and compression load are investigated using Casrock numerical computation software, which is based on the cellular automata theory. The results reveal that when the number of freeze–thaw cycles rises, the random rate of fracture network structure distribution increases, the uniformity of fracture distribution increases, and the dominating direction decreases. The sandstone's secondary fractures progressively increase as the fracture dominant angle rises, and the rock sample's failure mode eventually shifts from tensile failure to compression-shear mixed failure. When the comprehensive dominant angle of fracture is 60°, the fracture of freeze–thaw rock is more prone to expansion and its mechanical strength deteriorates more. The fractured rock creates narrow strip directional damage along the end of the original fracture when subjected to compressive load, exhibiting typical localization features. The main crack and the secondary crack dominate the crack progression. The number of secondary fractures inside sandstone steadily grows as the fracture's comprehensive dominant angle increases. The direction of the crack penetration development is determined by the comprehensive dominating angle of the fracture.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04010-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The surrounding rock of tunnel engineering in an alpine mountainous environment is prone to frequent freeze–thaw action due to fissure water and temperature differential, which leads to crack propagation and even failure in rock. Freezing sandstone CT damage-free scanning studies were conducted. Based on deep learning theory, the U-Net network technique is utilized to naturally merge high-resolution properties of frozen rock CT images in the shrinking path with low-resolution characteristics in the expansion path. Intelligent detection of freezing rock fissures and geometric information parameters at the pixel level has been accomplished. The primary fracture structure and its parameters of the sandstone with natural damage during the freeze–thaw process are obtained, and the pixel-level intelligent identification of the meso-structure and geometric information parameters of the freeze–thaw rock fracture is realized. This justifies the classification of naturally cracked rock under load and freeze–thaw as a discrete time-dimensional evolution system. The dynamic process and mechanical characteristics of meso-damage propagation of naturally fractured rock under freeze–thaw and compression load are investigated using Casrock numerical computation software, which is based on the cellular automata theory. The results reveal that when the number of freeze–thaw cycles rises, the random rate of fracture network structure distribution increases, the uniformity of fracture distribution increases, and the dominating direction decreases. The sandstone's secondary fractures progressively increase as the fracture dominant angle rises, and the rock sample's failure mode eventually shifts from tensile failure to compression-shear mixed failure. When the comprehensive dominant angle of fracture is 60°, the fracture of freeze–thaw rock is more prone to expansion and its mechanical strength deteriorates more. The fractured rock creates narrow strip directional damage along the end of the original fracture when subjected to compressive load, exhibiting typical localization features. The main crack and the secondary crack dominate the crack progression. The number of secondary fractures inside sandstone steadily grows as the fracture's comprehensive dominant angle increases. The direction of the crack penetration development is determined by the comprehensive dominating angle of the fracture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Numerical study of breaching at upper parts of homogenous earthen dams Laboratory appraisal of geomechanical and mineralogical factors controlling landslide potential of soil-shales matrix Damage evolution characteristics of freeze–thaw rock combined with CT image and deep learning technology Explicit analysis of the anisotropic characteristics and prediction of the failure behavior of complicated jointed rock masses under triaxial stress Research on the spatiotemporal evolution of deformation and seismic dynamic response characteristics of high-steep loess slope on the northeast edge of the Qinghai-Tibet Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1