{"title":"Numerical study of breaching at upper parts of homogenous earthen dams","authors":"Emre Dumlu, Mehmet Şükrü Güney, Merve Okan, Gürkan Özden, Gökmen Tayfur","doi":"10.1007/s10064-024-04009-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, time-dependent finite element analyses of the breaching process in two homogenous earth-fill dams were performed using the finite element method. Breaching was initiated at the middle and corner sections of the upper part of the dam bodies. The numerical results were compared with the findings of the experiments realized on dams 60 cm high, 2 m wide at bottom, 20 cm wide at crest with 1 V:1.5H side slopes at upstream and downstream faces. This numerical study combines time-dependent hydraulic gradient distributions and groundwater flows to assess breach areas, velocities, and flow rates. A Python algorithm was integrated with the Jupyter console, allowing the simulation of the breach mechanism in multiple runs to determine breach parameters. Both numerical and experimental analyses revealed that the dams were exposed to backward erosion, starting at the downstream side of the dam and progressing inward. The compatibility between experimental and numerical results was sought by means of the parameters RMSE, MAE and the statistical performance of the numerical approach was evaluated by using RSR, NSE, and PBIAS. A fairly good agreement was obtained between the experimental and numerical results.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04009-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, time-dependent finite element analyses of the breaching process in two homogenous earth-fill dams were performed using the finite element method. Breaching was initiated at the middle and corner sections of the upper part of the dam bodies. The numerical results were compared with the findings of the experiments realized on dams 60 cm high, 2 m wide at bottom, 20 cm wide at crest with 1 V:1.5H side slopes at upstream and downstream faces. This numerical study combines time-dependent hydraulic gradient distributions and groundwater flows to assess breach areas, velocities, and flow rates. A Python algorithm was integrated with the Jupyter console, allowing the simulation of the breach mechanism in multiple runs to determine breach parameters. Both numerical and experimental analyses revealed that the dams were exposed to backward erosion, starting at the downstream side of the dam and progressing inward. The compatibility between experimental and numerical results was sought by means of the parameters RMSE, MAE and the statistical performance of the numerical approach was evaluated by using RSR, NSE, and PBIAS. A fairly good agreement was obtained between the experimental and numerical results.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.