3D high-density ambient noise imaging of the Nankou-Sunhe buried active fault in Beijing

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Engineering Geology Pub Date : 2024-12-16 DOI:10.1016/j.enggeo.2024.107862
Xu Liu, Ketong Hu, Rongyi Qian, Shuai Zhao, Jun Zhang, Jianyu Ling, Zhenning Ma, Zhiyong Wu, Yinhu Huang, Yongqi Meng, Zhanfei Li, Dongya Zhang
{"title":"3D high-density ambient noise imaging of the Nankou-Sunhe buried active fault in Beijing","authors":"Xu Liu, Ketong Hu, Rongyi Qian, Shuai Zhao, Jun Zhang, Jianyu Ling, Zhenning Ma, Zhiyong Wu, Yinhu Huang, Yongqi Meng, Zhanfei Li, Dongya Zhang","doi":"10.1016/j.enggeo.2024.107862","DOIUrl":null,"url":null,"abstract":"The Nankou-Sunhe fault (NSF) is a vital buried active fault within the Beijing Plain. Investigating the detailed structure of the NSF and the sedimentary structures on both sides is pivotal for urban engineering projects to mitigate geological hazards. Three-dimensional (3D) seismic exploration can provide comprehensive and precise information about subsurface structures, aiding in the identification and characterisation of the spatial geometry, extensional direction, and features of sedimentary structures on both sides of the fault. In this study, we conducted a 3D high-density ambient noise seismic survey covering approximately 40 km<ce:sup loc=\"post\">2</ce:sup> around the NSF. Utilising the Multichannel Analysis of Passive Surface waves (MAPS), we obtained fundamental mode Rayleigh wave phase velocity diagrams in the 0.5–4 Hz range, subsequently inverting them to reveal a 3D shear (<ce:italic>S</ce:italic>)-wave velocity model extending to a depth of 1 km. The model shows lower velocities in the southwestern region, with shallow S-wave velocities of approximately 400–600 m/s and deep-seated velocities ranging from 1800 to 2000 m/s. The northeastern region is characterised by higher velocities, with shallow S-wave velocities of approximately 900–1200 m/s and deeper velocities reaching 3000–3400 m/s. The NSF is a high angle (50°-70°) normal fault striking northeast and dipping towards the southwest; the dip angle exhibits local variation. An S-wave velocity of 1 km/s was used to estimate sediment thickness on both sides of the fault. The MaChikou Sag (MCKS) on the southwest side of the NSF is approximately 400–600 m thick, while the northeastern JingXi High (JXH) is less than 200 m thick. The NSF was positively correlated with the bedrock surface (1 km/s isovelocity). Moreover, this study ascertained that by employing MAPS with a 200 m station spacing within a complex and noisy urban environment, one can extract accurate fundamental-mode Rayleigh waves, allowing for the subsequent construction of a 3D high-resolution S-wave velocity model.","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"3 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.enggeo.2024.107862","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Nankou-Sunhe fault (NSF) is a vital buried active fault within the Beijing Plain. Investigating the detailed structure of the NSF and the sedimentary structures on both sides is pivotal for urban engineering projects to mitigate geological hazards. Three-dimensional (3D) seismic exploration can provide comprehensive and precise information about subsurface structures, aiding in the identification and characterisation of the spatial geometry, extensional direction, and features of sedimentary structures on both sides of the fault. In this study, we conducted a 3D high-density ambient noise seismic survey covering approximately 40 km2 around the NSF. Utilising the Multichannel Analysis of Passive Surface waves (MAPS), we obtained fundamental mode Rayleigh wave phase velocity diagrams in the 0.5–4 Hz range, subsequently inverting them to reveal a 3D shear (S)-wave velocity model extending to a depth of 1 km. The model shows lower velocities in the southwestern region, with shallow S-wave velocities of approximately 400–600 m/s and deep-seated velocities ranging from 1800 to 2000 m/s. The northeastern region is characterised by higher velocities, with shallow S-wave velocities of approximately 900–1200 m/s and deeper velocities reaching 3000–3400 m/s. The NSF is a high angle (50°-70°) normal fault striking northeast and dipping towards the southwest; the dip angle exhibits local variation. An S-wave velocity of 1 km/s was used to estimate sediment thickness on both sides of the fault. The MaChikou Sag (MCKS) on the southwest side of the NSF is approximately 400–600 m thick, while the northeastern JingXi High (JXH) is less than 200 m thick. The NSF was positively correlated with the bedrock surface (1 km/s isovelocity). Moreover, this study ascertained that by employing MAPS with a 200 m station spacing within a complex and noisy urban environment, one can extract accurate fundamental-mode Rayleigh waves, allowing for the subsequent construction of a 3D high-resolution S-wave velocity model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
期刊最新文献
Rill erosion in post-seismic watershed – A non-negligible transporting way of fluvial sediment 3D high-density ambient noise imaging of the Nankou-Sunhe buried active fault in Beijing Automatic identification of rock fractures based on deep learning An improved rock damage model from a cyclic temperature – triaxial loading experiment for compressed air energy storage caverns Seismic and environmental controls on slow-moving landslides: Insights from the 2008 Wenchuan Earthquake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1