Pyrimidine synthesis enzyme CTP synthetase 1 suppresses antiviral interferon induction by deamidating IRF3

IF 25.5 1区 医学 Q1 IMMUNOLOGY Immunity Pub Date : 2024-12-23 DOI:10.1016/j.immuni.2024.11.020
Youliang Rao, Chao Qin, Ali Can Savas, Qizhi Liu, Shu Feng, Guoli Hou, Taolin Xie, Pinghui Feng
{"title":"Pyrimidine synthesis enzyme CTP synthetase 1 suppresses antiviral interferon induction by deamidating IRF3","authors":"Youliang Rao, Chao Qin, Ali Can Savas, Qizhi Liu, Shu Feng, Guoli Hou, Taolin Xie, Pinghui Feng","doi":"10.1016/j.immuni.2024.11.020","DOIUrl":null,"url":null,"abstract":"Metabolism is typically contextualized in conjunction with proliferation and growth. The roles of metabolic enzymes beyond metabolism—such as in innate immune responses—are underexplored. Using a focused short hairpin RNA (shRNA)-mediated screen, we identified CTP synthetase 1 (CTPS1), a rate-limiting enzyme of pyrimidine synthesis, as a negative regulator of interferon induction. Mechanistically, CTPS1 interacts with and deamidates interferon regulatory factor 3 (IRF3). Deamidation at N85 impairs IRF3 binding to promoters containing IRF3-responsive elements, thus muting interferon (IFN) induction. Employing CTPS1 conditional deletion and IRF3 deamidated or deamidation-resistant knockin mice, we demonstrated that CTPS1-driven IRF3 deamidation restricts IFN induction in response to viral infection in vivo. However, during immune activation, IRF3 deamidation by CTPS1 is inhibited by glycogen synthase kinase 3 beta (GSK3β) to promote IFN induction. This work demonstrates how CTPS1 tames innate immunity independent of its role in pyrimidine synthesis, thus expanding the functional repertoire of metabolic enzymes into immune regulation.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"32 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.11.020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolism is typically contextualized in conjunction with proliferation and growth. The roles of metabolic enzymes beyond metabolism—such as in innate immune responses—are underexplored. Using a focused short hairpin RNA (shRNA)-mediated screen, we identified CTP synthetase 1 (CTPS1), a rate-limiting enzyme of pyrimidine synthesis, as a negative regulator of interferon induction. Mechanistically, CTPS1 interacts with and deamidates interferon regulatory factor 3 (IRF3). Deamidation at N85 impairs IRF3 binding to promoters containing IRF3-responsive elements, thus muting interferon (IFN) induction. Employing CTPS1 conditional deletion and IRF3 deamidated or deamidation-resistant knockin mice, we demonstrated that CTPS1-driven IRF3 deamidation restricts IFN induction in response to viral infection in vivo. However, during immune activation, IRF3 deamidation by CTPS1 is inhibited by glycogen synthase kinase 3 beta (GSK3β) to promote IFN induction. This work demonstrates how CTPS1 tames innate immunity independent of its role in pyrimidine synthesis, thus expanding the functional repertoire of metabolic enzymes into immune regulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunity
Immunity 医学-免疫学
CiteScore
49.40
自引率
2.20%
发文量
205
审稿时长
6 months
期刊介绍: Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.
期刊最新文献
Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis Antigen presentation by tumor-associated macrophages drives T cells from a progenitor exhaustion state to terminal exhaustion Pyrimidine synthesis enzyme CTP synthetase 1 suppresses antiviral interferon induction by deamidating IRF3 Durable lymphocyte subset elimination upon a single dose of AAV-delivered depletion antibody dissects immune control of chronic viral infection Deep profiling deconstructs features associated with memory CD8+ T cell tissue residence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1