Pooling Biospecimens for Efficient Exposure Assessment When Using Case-Cohort Analysis in Cohort Studies.

IF 10.1 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Health Perspectives Pub Date : 2024-12-01 Epub Date: 2024-12-24 DOI:10.1289/EHP14476
Min Shi, David M Umbach, Clarice R Weinberg
{"title":"Pooling Biospecimens for Efficient Exposure Assessment When Using Case-Cohort Analysis in Cohort Studies.","authors":"Min Shi, David M Umbach, Clarice R Weinberg","doi":"10.1289/EHP14476","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Large prospective cohort studies have been fruitful for identifying exposure-disease associations. In a cohort where biospecimens (e.g., blood, urine) were collected at enrollment, analysts can exploit a case-cohort approach: Biospecimens from a random sample of cohort participants, called the \"subcohort,\" plus a sample of incident cases that were not part of the subcohort are assayed. Reusing subcohort data for multiple disease outcomes can reduce costs and conserve specimen archives. Pooling biospecimen samples before assay could both save money and reduce depletion of the archive but has not been studied for cohort studies.</p><p><strong>Objectives: </strong>We develop and evaluate a biospecimen pooling strategy for case-cohort analyses that relate an exposure to risk of a rare disease.</p><p><strong>Methods: </strong>Our approach involves constructing pooling sets for cases not in the subcohort after grouping them according to time of diagnosis (e.g., age). In contrast, members of the subcohort are grouped by age at entry before constructing pooling sets. The analyst then fits a logistic regression model that jointly stratifies by age at risk and pooling set size and adjusts for confounders. We used simulations (288 sampling scenarios with 1,000 simulated datasets each) to evaluate the performance of this approach for several sizes of pooling sets and illustrated its application to environmental epidemiologic studies by reanalyzing Sister Study data.</p><p><strong>Results: </strong>Parameter estimates were nearly unbiased, and 95% confidence intervals constructed using a bootstrap estimate of the standard error performed well. In statistical tests also based on the bootstrap standard error, pooling up to 8 specimens per pool caused only modest loss of power. Assigning more cohort members to the subcohort and commensurately increasing the number of specimens per pool improved power and precision substantially while reducing the number of assays.</p><p><strong>Discussion: </strong>When using case-cohort analysis to study disease outcomes in relation to exposures assessed using biospecimens in a cohort study, epidemiologists should consider biospecimen pooling as a way to improve statistical power, conserve irreplaceable archives, and save money. https://doi.org/10.1289/EHP14476.</p>","PeriodicalId":11862,"journal":{"name":"Environmental Health Perspectives","volume":"132 12","pages":"127004"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Health Perspectives","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1289/EHP14476","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Large prospective cohort studies have been fruitful for identifying exposure-disease associations. In a cohort where biospecimens (e.g., blood, urine) were collected at enrollment, analysts can exploit a case-cohort approach: Biospecimens from a random sample of cohort participants, called the "subcohort," plus a sample of incident cases that were not part of the subcohort are assayed. Reusing subcohort data for multiple disease outcomes can reduce costs and conserve specimen archives. Pooling biospecimen samples before assay could both save money and reduce depletion of the archive but has not been studied for cohort studies.

Objectives: We develop and evaluate a biospecimen pooling strategy for case-cohort analyses that relate an exposure to risk of a rare disease.

Methods: Our approach involves constructing pooling sets for cases not in the subcohort after grouping them according to time of diagnosis (e.g., age). In contrast, members of the subcohort are grouped by age at entry before constructing pooling sets. The analyst then fits a logistic regression model that jointly stratifies by age at risk and pooling set size and adjusts for confounders. We used simulations (288 sampling scenarios with 1,000 simulated datasets each) to evaluate the performance of this approach for several sizes of pooling sets and illustrated its application to environmental epidemiologic studies by reanalyzing Sister Study data.

Results: Parameter estimates were nearly unbiased, and 95% confidence intervals constructed using a bootstrap estimate of the standard error performed well. In statistical tests also based on the bootstrap standard error, pooling up to 8 specimens per pool caused only modest loss of power. Assigning more cohort members to the subcohort and commensurately increasing the number of specimens per pool improved power and precision substantially while reducing the number of assays.

Discussion: When using case-cohort analysis to study disease outcomes in relation to exposures assessed using biospecimens in a cohort study, epidemiologists should consider biospecimen pooling as a way to improve statistical power, conserve irreplaceable archives, and save money. https://doi.org/10.1289/EHP14476.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Health Perspectives
Environmental Health Perspectives 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
14.40
自引率
2.90%
发文量
388
审稿时长
6 months
期刊介绍: Environmental Health Perspectives (EHP) is a monthly peer-reviewed journal supported by the National Institute of Environmental Health Sciences, part of the National Institutes of Health under the U.S. Department of Health and Human Services. Its mission is to facilitate discussions on the connections between the environment and human health by publishing top-notch research and news. EHP ranks third in Public, Environmental, and Occupational Health, fourth in Toxicology, and fifth in Environmental Sciences.
期刊最新文献
Effectiveness of a Multifaceted Intervention (TEMP) for Prevention of Occupational Heat-Related Illness among Outdoor Workers in the Power Grid Industry: A Cluster Randomized Controlled Trial. Estimating the Exposure-Response Relationship between Fine Mineral Dust Concentration and Coccidioidomycosis Incidence Using Speciated Particulate Matter Data: A Longitudinal Surveillance Study. Hair Straightener Use in Relation to Prevalent and Incident Fibroids in the Sister Study with a Focus on Black Women. Invited Perspective: Critical Needs for Advancing Beauty Justice. When It Rains It Pours: Campylobacter Infection Rates after Rain on Wet and Dry Soils.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1