Development of Nipple Trauma Evaluation System With Deep Learning.

IF 2.1 4区 医学 Q2 NURSING Journal of Human Lactation Pub Date : 2024-12-24 DOI:10.1177/08903344241303867
Maya Nakamura, Hiroyuki Sugimori, Yasuhiko Ebina
{"title":"Development of Nipple Trauma Evaluation System With Deep Learning.","authors":"Maya Nakamura, Hiroyuki Sugimori, Yasuhiko Ebina","doi":"10.1177/08903344241303867","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>No research has been conducted on the use of deep learning for breastfeeding support.</p><p><strong>Research aim: </strong>This study aims to develop a nipple trauma evaluation system using deep learning.</p><p><strong>Methods: </strong>We used an exploratory data analysis approach to develop a deep-learning model for medical imaging. Employing object detection and classification, this Japanese study retrieved 753 images from a previous study. The classification protocol, based on the \"seven signs of nipple trauma associated with breastfeeding,\" categorized the images into eight classes. For practical purposes, the eight original classes were consolidated into four broader categories: \"None,\" \"Minor,\" \"Moderate,\" and \"Severe,\" using data augmentation procedures that were consistent with the original classification system. The Precision, Recall, Overall Accuracy, and Area Under the Curve (AUC) were calculated, and the model's efficiency was evaluated using Frames Per Second (FPS).</p><p><strong>Results: </strong>The object detector's high mean average precision and frames per second rate for nipple and areola detection, confirmed exceptional accuracy. The eight-class image classifier returned notable AUC values, with fissures, peeling, purpura, and scabbing exceeding 0.8. The highest average recall and precision was for scabbing, and the lowest for blistering. The four-class classifier accurately predicted severe conditions, with an average AUC > 0.7, whereas categories without classifications and those deemed minor had lower recall and precision rates.</p><p><strong>Conclusions: </strong>A sophisticated deep learning system detects and classifies nipple trauma automatically, potentially aiding breastfeeding caregivers through objective image assessment and operational improvements.</p><p><strong>Abstract in japanese: </strong>: におけるのにするはわれていない。: は、をいたシステムのをとした。: では、をいたモデルをするため、データアプローチをいた。およびのをい、でわれたでされた753のをした。「にうの7」にづき、を8クラスにした。をし、4つのカテゴリ「なし」、「」、「」、「」の4つのカテゴリにし、のシステムにするデータをった。、、Overall Accuracy、AUC()をし、モデルのはFPS(Frames Per Second)でした。: におけるいmAP()とFPSがされ、およびのがされた。8クラスのは、、、、で0.8をえるなAUCがられた。とがもかったのはであり、でもかった。4クラスのはのをにし、AUCは0.7をえたが、なしやとされるカテゴリはとがいとなった。: をしたこのなシステムは、のとをでうことができ、なをじて、のとをサポートするなツールとなりる。Back Translation Completed by Hiroko Hongo, MSW, PhD, IBCLC.</p>","PeriodicalId":15948,"journal":{"name":"Journal of Human Lactation","volume":" ","pages":"8903344241303867"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Lactation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08903344241303867","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NURSING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: No research has been conducted on the use of deep learning for breastfeeding support.

Research aim: This study aims to develop a nipple trauma evaluation system using deep learning.

Methods: We used an exploratory data analysis approach to develop a deep-learning model for medical imaging. Employing object detection and classification, this Japanese study retrieved 753 images from a previous study. The classification protocol, based on the "seven signs of nipple trauma associated with breastfeeding," categorized the images into eight classes. For practical purposes, the eight original classes were consolidated into four broader categories: "None," "Minor," "Moderate," and "Severe," using data augmentation procedures that were consistent with the original classification system. The Precision, Recall, Overall Accuracy, and Area Under the Curve (AUC) were calculated, and the model's efficiency was evaluated using Frames Per Second (FPS).

Results: The object detector's high mean average precision and frames per second rate for nipple and areola detection, confirmed exceptional accuracy. The eight-class image classifier returned notable AUC values, with fissures, peeling, purpura, and scabbing exceeding 0.8. The highest average recall and precision was for scabbing, and the lowest for blistering. The four-class classifier accurately predicted severe conditions, with an average AUC > 0.7, whereas categories without classifications and those deemed minor had lower recall and precision rates.

Conclusions: A sophisticated deep learning system detects and classifies nipple trauma automatically, potentially aiding breastfeeding caregivers through objective image assessment and operational improvements.

Abstract in japanese: : におけるのにするはわれていない。: は、をいたシステムのをとした。: では、をいたモデルをするため、データアプローチをいた。およびのをい、でわれたでされた753のをした。「にうの7」にづき、を8クラスにした。をし、4つのカテゴリ「なし」、「」、「」、「」の4つのカテゴリにし、のシステムにするデータをった。、、Overall Accuracy、AUC()をし、モデルのはFPS(Frames Per Second)でした。: におけるいmAP()とFPSがされ、およびのがされた。8クラスのは、、、、で0.8をえるなAUCがられた。とがもかったのはであり、でもかった。4クラスのはのをにし、AUCは0.7をえたが、なしやとされるカテゴリはとがいとなった。: をしたこのなシステムは、のとをでうことができ、なをじて、のとをサポートするなツールとなりる。Back Translation Completed by Hiroko Hongo, MSW, PhD, IBCLC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Human Lactation
Journal of Human Lactation 医学-妇产科学
CiteScore
5.00
自引率
11.50%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Committed to the promotion of diversity and equity in all our policies and practices, our aims are: To provide our readers and the international communities of clinicians, educators and scholars working in the field of lactation with current and quality-based evidence, from a broad array of disciplines, including the medical sciences, basic sciences, social sciences and the humanities. To provide student and novice researchers, as well as, researchers whose native language is not English, with expert editorial guidance while preparing their work for publication in JHL. In each issue, the Journal of Human Lactation publishes original research, original theoretical and conceptual articles, discussions of policy and practice issues, and the following special features: Advocacy: A column that discusses a ‘hot’ topic in lactation advocacy About Research: A column focused on an in-depth discussion of a different research topic each issue Lactation Newsmakers: An interview with a widely-recognized outstanding expert in the field from around the globe Research Commentary: A brief discussion of the issues raised in a specific research article published in the current issue Book review(s): Reviews written by content experts about relevant new publications International News Briefs: From major international lactation organizations.
期刊最新文献
Mothers' Gender-role Ideologies and Exclusive Breastfeeding in Western Rural China: A Cross-Sectional Study. The Utility of Secondary Data Analysis in Breastfeeding Research: Opportunities and Challenges. Development of Nipple Trauma Evaluation System With Deep Learning. Association Between Breastfeeding Peer Support and Confidence in Breastfeeding. Systematic Review on the Efficacy of Moisturizing Therapy in Treating Nipple Trauma and Nipple Pain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1