{"title":"Nuclear respiratory factor-1 (NRF1) induction as a powerful strategy to deter mitochondrial dysfunction and senescence in mesenchymal stem cells.","authors":"Hyunho Lee, Matteo Massaro, Nourhan Abdelfattah, Gherardo Baudo, Haoran Liu, Kyuson Yun, Elvin Blanco","doi":"10.1111/acel.14446","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies due to their self-renewal and differentiation capabilities. Pathological microenvironments expose MSCs to senescence-inducing factors such as reactive oxygen species (ROS), resulting in MSC functional decline and loss of stemness. Oxidative stress leads to mitochondrial dysfunction, a hallmark of senescence, and is prevalent in aging tissues characterized by elevated ROS levels. We hypothesized that overexpression of nuclear respiratory factor-1 (NRF1), a driver of mitochondrial biogenesis, could metabolically potentiate MSCs and prevent MSC senescence. Single-cell RNA sequencing (scRNA-Seq) revealed that MSCs transfected with NRF1 messenger RNA (mRNA) exhibited upregulated expression of genes associated with oxidative phosphorylation (OXPHOS), decreased glycolytic markers, and suppression of senescence-related pathways. To test whether NRF1 induction could mitigate stress-induced premature senescence, we exposed MSCs to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and validated our findings in a replicative senescence model. NRF1 mRNA transfection significantly increased mitochondrial mass and improved aberrant mitochondrial processes associated with senescence, including reduced mitochondrial and intracellular total ROS production. Mitochondrial health and dynamics were preserved, and respiratory function was restored, as evidenced by enhanced OXPHOS, reduced glycolysis, and increased ATP production. Notably, NRF1 overexpression led to decreased senescence-associated β-galactosidase (SA-β-gal) activity and reduced expression of senescence markers p53, p21, and p16. Our findings demonstrate that NRF1 induction attenuates MSC senescence by enhancing mitochondrial function, suggesting potential translational applications for MSC-based therapies and senescence-targeted interventions.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14446"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14446","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies due to their self-renewal and differentiation capabilities. Pathological microenvironments expose MSCs to senescence-inducing factors such as reactive oxygen species (ROS), resulting in MSC functional decline and loss of stemness. Oxidative stress leads to mitochondrial dysfunction, a hallmark of senescence, and is prevalent in aging tissues characterized by elevated ROS levels. We hypothesized that overexpression of nuclear respiratory factor-1 (NRF1), a driver of mitochondrial biogenesis, could metabolically potentiate MSCs and prevent MSC senescence. Single-cell RNA sequencing (scRNA-Seq) revealed that MSCs transfected with NRF1 messenger RNA (mRNA) exhibited upregulated expression of genes associated with oxidative phosphorylation (OXPHOS), decreased glycolytic markers, and suppression of senescence-related pathways. To test whether NRF1 induction could mitigate stress-induced premature senescence, we exposed MSCs to hydrogen peroxide (H2O2) and validated our findings in a replicative senescence model. NRF1 mRNA transfection significantly increased mitochondrial mass and improved aberrant mitochondrial processes associated with senescence, including reduced mitochondrial and intracellular total ROS production. Mitochondrial health and dynamics were preserved, and respiratory function was restored, as evidenced by enhanced OXPHOS, reduced glycolysis, and increased ATP production. Notably, NRF1 overexpression led to decreased senescence-associated β-galactosidase (SA-β-gal) activity and reduced expression of senescence markers p53, p21, and p16. Our findings demonstrate that NRF1 induction attenuates MSC senescence by enhancing mitochondrial function, suggesting potential translational applications for MSC-based therapies and senescence-targeted interventions.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.