Influence of vascular embolism level and drug injection rate on thrombolytic therapy of bifurcated femoral vein: Numerical simulation and validation study.

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2024-12-18 DOI:10.1016/j.cmpb.2024.108570
Xianglei Zhang, Hongyu Cheng, Boyuan Lin, Sisi Li, Hongming Zhou, Mingrui Huang, Jiahao Wu
{"title":"Influence of vascular embolism level and drug injection rate on thrombolytic therapy of bifurcated femoral vein: Numerical simulation and validation study.","authors":"Xianglei Zhang, Hongyu Cheng, Boyuan Lin, Sisi Li, Hongming Zhou, Mingrui Huang, Jiahao Wu","doi":"10.1016/j.cmpb.2024.108570","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Deep vein thrombosis (DVT) of the lower limbs is a critical global vascular disease. Accurately assessing and predicting the efficacy of DVT treatment remains a significant challenge due to a lack of understanding of the mechanisms by which the level of patient-specific embolization and the rate of drug injection affect thrombolytic therapy.</p><p><strong>Methods: </strong>In this study, we used the computed tomographic venography (CTV) clinical method to obtain patient-specific parameters, and the flow-solid interaction (FSI) method combined with biochemical response modeling of thrombolysis to analyze patient-specific hemodynamic and biomechanical characteristics and to quantitatively assess the effects of three vessel embolism levels (VEL) versus two drug injection rates (DIR) on bifurcated femoral venous thrombolytic therapy. In addition, we verified the reliability of the simulation results by in vitro thrombolytic therapy experiments.</p><p><strong>Results: </strong>In the bifurcated femoral vein, the state of blood flow, vortex, wall shear stress (WSS), time-averaged wall shear stress (TAWSS), vessel wall pressure, leaflet motion displacement, and valve von Mises stress vary with thrombus size and vessel shape. Venous valves accelerate blood flow, producing a jet phenomenon. From the numerical and experimental results, thrombolytic therapy should select the injection rate according to the severity of the thrombus. Rapid injection restores flow in mild thrombosis, while slow injection ensures gradual drug penetration for serious thrombosis.</p><p><strong>Conclusions: </strong>The present study found that the hemodynamic parameters and biomechanical characteristics explored are closely related to the efficacy of thrombolytic therapy. Both hemodynamic parameters and biomechanical characteristics are affected by blood flow velocity. At the same time, the study also revealed the mechanism of the influence of VTE and DIR on bifurcated venous thrombolytic therapy, to provide a scientific basis for clinicians to formulate more precise treatment strategies.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"260 ","pages":"108570"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2024.108570","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Deep vein thrombosis (DVT) of the lower limbs is a critical global vascular disease. Accurately assessing and predicting the efficacy of DVT treatment remains a significant challenge due to a lack of understanding of the mechanisms by which the level of patient-specific embolization and the rate of drug injection affect thrombolytic therapy.

Methods: In this study, we used the computed tomographic venography (CTV) clinical method to obtain patient-specific parameters, and the flow-solid interaction (FSI) method combined with biochemical response modeling of thrombolysis to analyze patient-specific hemodynamic and biomechanical characteristics and to quantitatively assess the effects of three vessel embolism levels (VEL) versus two drug injection rates (DIR) on bifurcated femoral venous thrombolytic therapy. In addition, we verified the reliability of the simulation results by in vitro thrombolytic therapy experiments.

Results: In the bifurcated femoral vein, the state of blood flow, vortex, wall shear stress (WSS), time-averaged wall shear stress (TAWSS), vessel wall pressure, leaflet motion displacement, and valve von Mises stress vary with thrombus size and vessel shape. Venous valves accelerate blood flow, producing a jet phenomenon. From the numerical and experimental results, thrombolytic therapy should select the injection rate according to the severity of the thrombus. Rapid injection restores flow in mild thrombosis, while slow injection ensures gradual drug penetration for serious thrombosis.

Conclusions: The present study found that the hemodynamic parameters and biomechanical characteristics explored are closely related to the efficacy of thrombolytic therapy. Both hemodynamic parameters and biomechanical characteristics are affected by blood flow velocity. At the same time, the study also revealed the mechanism of the influence of VTE and DIR on bifurcated venous thrombolytic therapy, to provide a scientific basis for clinicians to formulate more precise treatment strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Multimodal autism detection: Deep hybrid model with improved feature level fusion. A simulation study of the impact of drug-IKr binding mechanisms on biomarkers of proarrhythmic risk reveals a crucial role in reverse use-dependence of action potential duration and a marked influence on the vulnerable window. Robust multi-modal fusion architecture for medical data with knowledge distillation. Influence of vascular embolism level and drug injection rate on thrombolytic therapy of bifurcated femoral vein: Numerical simulation and validation study. Design and validation of PACTUS: A gamified electronic device for stroke rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1