Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis

IF 25.5 1区 医学 Q1 IMMUNOLOGY Immunity Pub Date : 2024-12-26 DOI:10.1016/j.immuni.2024.11.023
Carina Diehl, Valeria Soberón, Seren Baygün, Yuanyan Chu, Jonathan Mandelbaum, Laura Kraus, Thomas Engleitner, Martina Rudelius, Marco Fangazio, Christoph Daniel, Sabrina Bortoluzzi, Sabine Helmrath, Pankaj Singroul, Vanessa Gölling, Francisco Osorio Barrios, Gönül Seyhan, Lena Oßwald, Maike Kober-Hasslacher, Theodor Zeng, Rupert Öllinger, Marc Schmidt-Supprian
{"title":"Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis","authors":"Carina Diehl, Valeria Soberón, Seren Baygün, Yuanyan Chu, Jonathan Mandelbaum, Laura Kraus, Thomas Engleitner, Martina Rudelius, Marco Fangazio, Christoph Daniel, Sabrina Bortoluzzi, Sabine Helmrath, Pankaj Singroul, Vanessa Gölling, Francisco Osorio Barrios, Gönül Seyhan, Lena Oßwald, Maike Kober-Hasslacher, Theodor Zeng, Rupert Öllinger, Marc Schmidt-Supprian","doi":"10.1016/j.immuni.2024.11.023","DOIUrl":null,"url":null,"abstract":"B cell immunity carries the inherent risk of deviating into autoimmunity and malignancy, which are both strongly associated with genetic variants or alterations that increase immune signaling. Here, we investigated the interplay of autoimmunity and lymphoma risk factors centered around the archetypal negative immune regulator <em>TNFAIP3</em>/A20 in mice. Counterintuitively, B cells with moderately elevated sensitivity to stimulation caused fatal autoimmune pathology, while those with high sensitivity did not. We resolved this apparent paradox by identifying a rheostat-like cytotoxic T cell checkpoint. Cytotoxicity was instructed by and directed against B cells with high intrinsic hyperresponsiveness, while less reactive cells were spared. Removing T cell control restored a linear relationship between intrinsic B cell reactivity and lethal lymphoproliferation, lymphomagenesis, and autoinflammation. We thus identify powerful T cell-mediated negative feedback control of inherited and acquired B cell pathogenicity and define a permissive window for autoimmunity to emerge.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"62 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.11.023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

B cell immunity carries the inherent risk of deviating into autoimmunity and malignancy, which are both strongly associated with genetic variants or alterations that increase immune signaling. Here, we investigated the interplay of autoimmunity and lymphoma risk factors centered around the archetypal negative immune regulator TNFAIP3/A20 in mice. Counterintuitively, B cells with moderately elevated sensitivity to stimulation caused fatal autoimmune pathology, while those with high sensitivity did not. We resolved this apparent paradox by identifying a rheostat-like cytotoxic T cell checkpoint. Cytotoxicity was instructed by and directed against B cells with high intrinsic hyperresponsiveness, while less reactive cells were spared. Removing T cell control restored a linear relationship between intrinsic B cell reactivity and lethal lymphoproliferation, lymphomagenesis, and autoinflammation. We thus identify powerful T cell-mediated negative feedback control of inherited and acquired B cell pathogenicity and define a permissive window for autoimmunity to emerge.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunity
Immunity 医学-免疫学
CiteScore
49.40
自引率
2.20%
发文量
205
审稿时长
6 months
期刊介绍: Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.
期刊最新文献
Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis Antigen presentation by tumor-associated macrophages drives T cells from a progenitor exhaustion state to terminal exhaustion Pyrimidine synthesis enzyme CTP synthetase 1 suppresses antiviral interferon induction by deamidating IRF3 Durable lymphocyte subset elimination upon a single dose of AAV-delivered depletion antibody dissects immune control of chronic viral infection Deep profiling deconstructs features associated with memory CD8+ T cell tissue residence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1