Oxidative electrochemical depolymerization of lignin using highly active self-standing electrocatalysts prepared by electrospinning of lignin

IF 5.8 2区 生物学 Q1 AGRICULTURAL ENGINEERING Biomass & Bioenergy Pub Date : 2025-02-01 DOI:10.1016/j.biombioe.2024.107560
M. García-Rollán, M. Toscano-de los Riscos, R. Ruiz-Rosas, J.M. Rosas, J. Rodríguez-Mirasol, T. Cordero
{"title":"Oxidative electrochemical depolymerization of lignin using highly active self-standing electrocatalysts prepared by electrospinning of lignin","authors":"M. García-Rollán,&nbsp;M. Toscano-de los Riscos,&nbsp;R. Ruiz-Rosas,&nbsp;J.M. Rosas,&nbsp;J. Rodríguez-Mirasol,&nbsp;T. Cordero","doi":"10.1016/j.biombioe.2024.107560","DOIUrl":null,"url":null,"abstract":"<div><div>Electrooxidative depolymerization of lignin enables obtaining renewable value-added chemicals under soft operation conditions. However, current nickel foam electrodes do not fully utilize their active phase. In this study, non-woven mats consisting of metal-containing carbon nanofibers were prepared by electrospinning of lignin and Ni, Co and/or Pd solutions. These mats, without further processing and additives, were tested as self-standing electrodes in the electrooxidative depolymerization of alkaline kraft lignin solution using a filter press electrolyzer at room temperature. The fibrillar electrocatalyst containing 10 % wt of Ni (CFNi10) showed the most promising results, producing i) up to 77 % of oxygen-rich depolymerized lignin solid, ii) a water-soluble fraction yield up to 19.8 % wt iii) total vanillin yield of 1.1 % wt, using specific charges as low as 250 C/g<sub>lignin</sub>, outperforming the commercial nickel foam electrode, and iv) full reusability. Consequently, the activity of the process is improved, while the amount of nickel deployed on the electrochemical cell is notably decreased from 30 down to 0.3 mg/cm<sup>2</sup>. The results of the present paper also demonstrate that lignin electrochemical depolymerization needs to be promoted by reactive oxygen species and/or in-situ generation of hydrogen peroxide.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"193 ","pages":"Article 107560"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424005130","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Electrooxidative depolymerization of lignin enables obtaining renewable value-added chemicals under soft operation conditions. However, current nickel foam electrodes do not fully utilize their active phase. In this study, non-woven mats consisting of metal-containing carbon nanofibers were prepared by electrospinning of lignin and Ni, Co and/or Pd solutions. These mats, without further processing and additives, were tested as self-standing electrodes in the electrooxidative depolymerization of alkaline kraft lignin solution using a filter press electrolyzer at room temperature. The fibrillar electrocatalyst containing 10 % wt of Ni (CFNi10) showed the most promising results, producing i) up to 77 % of oxygen-rich depolymerized lignin solid, ii) a water-soluble fraction yield up to 19.8 % wt iii) total vanillin yield of 1.1 % wt, using specific charges as low as 250 C/glignin, outperforming the commercial nickel foam electrode, and iv) full reusability. Consequently, the activity of the process is improved, while the amount of nickel deployed on the electrochemical cell is notably decreased from 30 down to 0.3 mg/cm2. The results of the present paper also demonstrate that lignin electrochemical depolymerization needs to be promoted by reactive oxygen species and/or in-situ generation of hydrogen peroxide.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木质素静电纺丝制备的高活性独立电催化剂用于氧化电化学解聚
木质素的电氧化解聚可以在软操作条件下获得可再生的增值化学品。然而,目前的泡沫镍电极并没有充分利用其活性相。在本研究中,以木质素和Ni, Co和/或Pd溶液为原料,静电纺丝制备了含金属碳纳米纤维组成的无纺布席子。这些垫子无需进一步加工和添加剂,在室温下使用压滤式电解槽在碱性硫酸盐木质素溶液的电氧化解聚中作为独立电极进行了测试。含有10%重量镍的纤维状电催化剂(CFNi10)显示出最有希望的结果,1)产生高达77%的富氧解聚木质素固体,2)水溶性部分收率高达19.8%重量,3)总香兰素收率为1.1%重量,使用比电荷低至250℃/木质素,优于商业镍泡沫电极,4)完全可重复使用。因此,该工艺的活性得到了提高,而电化学电池上的镍用量从30 mg/cm2显著降低到0.3 mg/cm2。本论文的结果还表明,木质素的电化学解聚需要活性氧和/或原位生成过氧化氢来促进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomass & Bioenergy
Biomass & Bioenergy 工程技术-能源与燃料
CiteScore
11.50
自引率
3.30%
发文量
258
审稿时长
60 days
期刊介绍: Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials. The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy. Key areas covered by the journal: • Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation. • Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal. • Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes • Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation • Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.
期刊最新文献
Isolation and characterization of nanocellulose from jackfruit peel: A comparative analysis of organic and inorganic acid hydrolysis on structural, thermal, and rheological properties Machine learning prediction of density of fatty acid methyl ester mixed with alkanes biodiesel over a wide range of operating conditions Editorial Board An integrated approach to the valorization of pyrolysis products from lignocellulosic residues and by-products Effect of calcination temperature and atmosphere on the properties and performance of CuAl catalysts for glycerol dehydration to acetol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1