Alejandro Lete, Francisco Lacleta, Lucía García, Joaquín Ruiz, Jesús Arauzo
{"title":"Effect of calcination temperature and atmosphere on the properties and performance of CuAl catalysts for glycerol dehydration to acetol","authors":"Alejandro Lete, Francisco Lacleta, Lucía García, Joaquín Ruiz, Jesús Arauzo","doi":"10.1016/j.biombioe.2025.107725","DOIUrl":null,"url":null,"abstract":"<div><div>A series of CuAl catalysts were prepared by the coprecipitation method. The objective of this study was to investigate the influence of different calcination temperatures (500, 600, and 675 °C) and calcination atmospheres (N<sub>2</sub> or air) on the catalysts physicochemical properties and performance in the gas-phase glycerol dehydration to acetol. The catalytic tests were carried out in a fixed bed reactor at 250 °C, atmospheric pressure, and a catalyst weight to glycerol flow rate ratio (W/m) of 30 g<sub>Catalyst</sub> min g<sub>Glycerol</sub><sup>−1</sup>. The catalysts were characterized by ICP-OES, N<sub>2</sub> adsorption-desorption, X-ray diffraction (XRD), H<sub>2</sub> temperature programmed reduction (H<sub>2</sub>-TPR), temperature gravimetric analysis (TGA), and elemental analysis. The characterization results revealed that both calcination temperature and calcination atmosphere influenced the textural and metallic properties. Increasing the calcination temperature lowered the reduction temperature, and decreased the surface area. The calcination atmosphere influenced the surface area and pore diameter, and the N<sub>2</sub> atmosphere generated a larger pore diameter. The best catalytic activity was achieved by the CuAl-675-N catalyst calcined at 675 °C in a N<sub>2</sub> atmosphere, which produced a glycerol conversion of 99.0 % and an acetol yield of 67.3 %. The superior performance could be attributed to textural properties, the Cu phase, and minimized carbon deposition, establishing it as one efficient catalyst derived from inexpensive and widely available metals. This work proposes an economical and simple technique based on calcination to improve the catalytic activity of Cu-based catalysts.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"195 ","pages":"Article 107725"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953425001369","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A series of CuAl catalysts were prepared by the coprecipitation method. The objective of this study was to investigate the influence of different calcination temperatures (500, 600, and 675 °C) and calcination atmospheres (N2 or air) on the catalysts physicochemical properties and performance in the gas-phase glycerol dehydration to acetol. The catalytic tests were carried out in a fixed bed reactor at 250 °C, atmospheric pressure, and a catalyst weight to glycerol flow rate ratio (W/m) of 30 gCatalyst min gGlycerol−1. The catalysts were characterized by ICP-OES, N2 adsorption-desorption, X-ray diffraction (XRD), H2 temperature programmed reduction (H2-TPR), temperature gravimetric analysis (TGA), and elemental analysis. The characterization results revealed that both calcination temperature and calcination atmosphere influenced the textural and metallic properties. Increasing the calcination temperature lowered the reduction temperature, and decreased the surface area. The calcination atmosphere influenced the surface area and pore diameter, and the N2 atmosphere generated a larger pore diameter. The best catalytic activity was achieved by the CuAl-675-N catalyst calcined at 675 °C in a N2 atmosphere, which produced a glycerol conversion of 99.0 % and an acetol yield of 67.3 %. The superior performance could be attributed to textural properties, the Cu phase, and minimized carbon deposition, establishing it as one efficient catalyst derived from inexpensive and widely available metals. This work proposes an economical and simple technique based on calcination to improve the catalytic activity of Cu-based catalysts.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.