Coupling Anionic Oxygen Redox with Selenium for Stable High‐Voltage Sodium Layered Oxide Cathodes

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-12-26 DOI:10.1002/adfm.202417758
Zhichen Xue, Neha Bothra, Dechao Meng, Guangxia Feng, Yuqi Li, Tony Cui, Hongchang Hao, Sang‐Jun Lee, Yijin Liu, Michal Bajdich, Jagjit Nanda, Xueli Zheng
{"title":"Coupling Anionic Oxygen Redox with Selenium for Stable High‐Voltage Sodium Layered Oxide Cathodes","authors":"Zhichen Xue, Neha Bothra, Dechao Meng, Guangxia Feng, Yuqi Li, Tony Cui, Hongchang Hao, Sang‐Jun Lee, Yijin Liu, Michal Bajdich, Jagjit Nanda, Xueli Zheng","doi":"10.1002/adfm.202417758","DOIUrl":null,"url":null,"abstract":"Utilizing anion redox reaction is crucial for developing the next generation of high‐energy density, low‐cost sodium‐ion batteries. However, the irreversible oxygen redox reaction in Na‐ion layered cathodes, which leads to voltage fading and reduced overall lifespan, has hindered their practical application. In this study, selenium is incorporated as a synergistic redox active center of oxygen to improve the stability of Na‐ion cathodes. The redesigned cathode maintains stable voltage by demonstrating reversible oxygen redox while significantly suppressing the redox activity of manganese. The anionic redox contribution capacity of the selenium‐doped Na<jats:sub>0.6</jats:sub>Li<jats:sub>0.2</jats:sub>Mn<jats:sub>0.8</jats:sub>O<jats:sub>2</jats:sub> cathode remains as high as 84% after 50 cycles, while the pristine Na<jats:sub>0.6</jats:sub>Li<jats:sub>0.2</jats:sub>Mn<jats:sub>0.8</jats:sub>O<jats:sub>2</jats:sub> cathode experiences a reduction to 39% of its initial capacity. The X‐ray photoelectron spectroscopy data and computational analysis further revealed that selenium doping participates in redox as Se<jats:sup>+4/5</jats:sup> which stabilizes the charged state and increases the energy step for O─O dimerization, thus improving the stability and lifespan of Na<jats:sub>0.6</jats:sub>Li<jats:sub>0.2</jats:sub>Mn<jats:sub>0.8</jats:sub>O<jats:sub>2</jats:sub> cathodes. The findings highlight the potential of redox coupling design to address the issue of voltage fade caused by irreversible anionic redox.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"106 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417758","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing anion redox reaction is crucial for developing the next generation of high‐energy density, low‐cost sodium‐ion batteries. However, the irreversible oxygen redox reaction in Na‐ion layered cathodes, which leads to voltage fading and reduced overall lifespan, has hindered their practical application. In this study, selenium is incorporated as a synergistic redox active center of oxygen to improve the stability of Na‐ion cathodes. The redesigned cathode maintains stable voltage by demonstrating reversible oxygen redox while significantly suppressing the redox activity of manganese. The anionic redox contribution capacity of the selenium‐doped Na0.6Li0.2Mn0.8O2 cathode remains as high as 84% after 50 cycles, while the pristine Na0.6Li0.2Mn0.8O2 cathode experiences a reduction to 39% of its initial capacity. The X‐ray photoelectron spectroscopy data and computational analysis further revealed that selenium doping participates in redox as Se+4/5 which stabilizes the charged state and increases the energy step for O─O dimerization, thus improving the stability and lifespan of Na0.6Li0.2Mn0.8O2 cathodes. The findings highlight the potential of redox coupling design to address the issue of voltage fade caused by irreversible anionic redox.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偶联阴离子氧氧化还原与硒用于稳定高压钠层状氧化物阴极
利用阴离子氧化还原反应对于开发新一代高能量密度、低成本钠离子电池至关重要。然而,钠离子层状阴极中不可逆的氧氧化还原反应会导致电压衰减和整体寿命缩短,这阻碍了它们的实际应用。在本研究中,硒作为氧的协同氧化还原活性中心被加入,以提高纳离子阴极的稳定性。重新设计的阴极在显著抑制锰的氧化还原活性的同时,还通过可逆的氧氧化还原作用保持电压稳定。掺硒的 Na0.6Li0.2Mn0.8O2 阴极的阴离子氧化还原容量在循环 50 次后仍高达 84%,而原始 Na0.6Li0.2Mn0.8O2 阴极的容量则下降到初始容量的 39%。X 射线光电子能谱数据和计算分析进一步表明,硒掺杂以 Se+4/5 的形式参与氧化还原,从而稳定了带电状态并增加了 O─O 二聚化的能级,从而提高了 Na0.6Li0.2Mn0.8O2 阴极的稳定性和寿命。这些发现凸显了氧化还原耦合设计在解决不可逆阴离子氧化还原引起的电压衰减问题方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Coherent Single-Atom Dipole–Dipole Coupling Mediates Holistic Regulation of K+ Migration for Superior Energy Storage and Dendrite-Free Metal Deposition Optical Control of Ferroelectric Imprint in BiFeO3 Activation of Semiconductor/Electrocatalyst/Electrolyte Interfaces Through Ligand Engineering for Boosting Photoelectrochemical Water Splitting Heterostructure-Derived Heterovalent Fe(OH)2/Fe Pair Sites: Tuning Adsorption of Intermediates and Enhancing Utilization of Atomic *H for Efficient Nitrate Reduction to Ammonia Janus Membrane for Simultaneous Water Purification and Power Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1