{"title":"SiB Monolayers-Based Gas Sensor: Work Function and Conductometric Type Gas Sensors","authors":"Mahnaz Mohammadi, Esmaeil Pakizeh","doi":"10.1002/adts.202401127","DOIUrl":null,"url":null,"abstract":"The air pollution and the rising emission of dangerous gases into the atmosphere are recently worrisome. In order to protect the humans and animals life's, it is crucial to monitor these harmful gases. Gases like HCHO, N<sub>2</sub>, NH<sub>3</sub>, CO<sub>2</sub>, CH<sub>4</sub>, CO, and SO<sub>2</sub> are dangerous for human health. As a result, gas sensors have been attracted significant interest as a means to effectively detect and adsorb these pollutants. In this study, the adsorption behavior of several common gas molecules on SiB monolayers has been investigated using density functional theory (DFT). The study focuses on examining the most stable configurations, adsorption energies, charge transfer, and electronic properties of selected gas molecules on the SiB surface. The gas adsorption behavior on SiB monolayers has been considered for use in work function type gas sensors and conductometric sensor devices. The work function of the SiB layer is found to vary between 4.06% and 27% after exposure to the selected gas molecules, indicating its high sensitivity to these gases. The current–voltage (<i>I</i>–<i>V</i>) characteristics exhibit distinct responses for different gas adsorptions on the SiB surface, particularly for HCHO, CO, and CO<sub>2</sub> gas molecules. Furthermore, the high sensitivity of SiB to gas adsorption open up possibilities for the improvement of gas sensing devices for monitoring and detecting harmful gases in various environments","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"18 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401127","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The air pollution and the rising emission of dangerous gases into the atmosphere are recently worrisome. In order to protect the humans and animals life's, it is crucial to monitor these harmful gases. Gases like HCHO, N2, NH3, CO2, CH4, CO, and SO2 are dangerous for human health. As a result, gas sensors have been attracted significant interest as a means to effectively detect and adsorb these pollutants. In this study, the adsorption behavior of several common gas molecules on SiB monolayers has been investigated using density functional theory (DFT). The study focuses on examining the most stable configurations, adsorption energies, charge transfer, and electronic properties of selected gas molecules on the SiB surface. The gas adsorption behavior on SiB monolayers has been considered for use in work function type gas sensors and conductometric sensor devices. The work function of the SiB layer is found to vary between 4.06% and 27% after exposure to the selected gas molecules, indicating its high sensitivity to these gases. The current–voltage (I–V) characteristics exhibit distinct responses for different gas adsorptions on the SiB surface, particularly for HCHO, CO, and CO2 gas molecules. Furthermore, the high sensitivity of SiB to gas adsorption open up possibilities for the improvement of gas sensing devices for monitoring and detecting harmful gases in various environments
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics