Marcel J. Eleveld, Juntian Wu, Kai Liu, Jim Ottelé, Omer Markovitch, Armin Kiani, Lukas C. Herold, Alessia Lasorsa, Patrick C.A. van der Wel, Sijbren Otto
{"title":"Departure from randomness: Evolution of self-replicators that can self-sort through steric zipper formation","authors":"Marcel J. Eleveld, Juntian Wu, Kai Liu, Jim Ottelé, Omer Markovitch, Armin Kiani, Lukas C. Herold, Alessia Lasorsa, Patrick C.A. van der Wel, Sijbren Otto","doi":"10.1016/j.chempr.2024.11.012","DOIUrl":null,"url":null,"abstract":"Darwinian evolution of self-replicating entities most likely played a key role in the emergence of life from inanimate matter. For evolution to occur, self-replicators must (1) have structural space accessible to them, (2) occupy only part of it at any time, and (3) navigate it through mutation and selection. We describe a system of self-replicating hexameric macrocycles formed upon the mixing of two building blocks and occupying a subset of possible sequences. Specific interactions, most likely through steric zipper formation, favor a hexamer sequence where the two blocks alternate. Under different replication-destruction regimes, distinct replicator mutants are selected. With non-selective destruction (via outflow), the fastest replicators dominate. With chemically mediated, selective destruction, a mutant that balances replication speed and resistance to reduction by steric zipper formation becomes dominant. This system demonstrates a rudimentary form of Darwinian evolution, where replicators adapt to changing selection pressures through mutation and selection.","PeriodicalId":268,"journal":{"name":"Chem","volume":"58 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.11.012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Darwinian evolution of self-replicating entities most likely played a key role in the emergence of life from inanimate matter. For evolution to occur, self-replicators must (1) have structural space accessible to them, (2) occupy only part of it at any time, and (3) navigate it through mutation and selection. We describe a system of self-replicating hexameric macrocycles formed upon the mixing of two building blocks and occupying a subset of possible sequences. Specific interactions, most likely through steric zipper formation, favor a hexamer sequence where the two blocks alternate. Under different replication-destruction regimes, distinct replicator mutants are selected. With non-selective destruction (via outflow), the fastest replicators dominate. With chemically mediated, selective destruction, a mutant that balances replication speed and resistance to reduction by steric zipper formation becomes dominant. This system demonstrates a rudimentary form of Darwinian evolution, where replicators adapt to changing selection pressures through mutation and selection.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.