{"title":"Predictive analytics of selections of russet potatoes","authors":"Fabiana Ferracina, Bala Krishnamoorthy, Mahantesh Halappanavar, Shengwei Hu, Vidyasagar Sathuvalli","doi":"10.1002/csc2.21432","DOIUrl":null,"url":null,"abstract":"We explore the application of machine learning algorithms specifically to enhance the selection process of Russet potato (<jats:italic>Solanum tuberosum</jats:italic> L.) clones in breeding trials by predicting their suitability for advancement. This study addresses the challenge of efficiently identifying high‐yield, disease‐resistant, and climate‐resilient potato varieties that meet processing industry standards. Leveraging manually collected data from trials in the state of Oregon, we investigate the potential of a wide variety of state‐of‐the‐art binary classification models. The dataset includes 1086 clones, with data on 38 attributes recorded for each clone, focusing on yield, size, appearance, and frying characteristics, with several control varieties planted consistently across four Oregon regions from 2013 to 2021. We conduct a comprehensive analysis of the dataset that includes preprocessing, feature engineering, and imputation to address missing values. We focus on several key metrics such as accuracy, F1‐score, and Matthews correlation coefficient (MCC) for model evaluation. The top‐performing models, namely a feedforward neural network classifier (Neural Net), a histogram‐based gradient boosting classifier (HGBC), and a support vector machine classifier (SVM), demonstrate consistent and significant results. To further validate our findings, we conducted a simulation study using the aims, data‐generating mechanisms, estimands, methods, and performance measures (ADEMP) framework, simulating different data‐generating scenarios to assess model robustness and performance through true positive, true negative, false positive, and false negative distributions, area under the receiver operating characteristic curve (AUC‐ROC) and MCC. The simulation results highlight that non‐linear models like SVM and HGBC consistently show higher AUC‐ROC and MCC than logistic regression, thus outperforming the traditional linear model across various distributions, and emphasizing the importance of model selection and tuning in agricultural trials. Variable selection further enhances model performance and identifies influential features in predicting trial outcomes. The findings emphasize the potential of machine learning in streamlining the selection process for potato varieties, offering benefits such as increased efficiency, substantial cost savings, and judicious resource utilization. Our study contributes insights into precision agriculture and showcases the relevance of advanced technologies for informed decision‐making in breeding programs.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"30 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21432","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
We explore the application of machine learning algorithms specifically to enhance the selection process of Russet potato (Solanum tuberosum L.) clones in breeding trials by predicting their suitability for advancement. This study addresses the challenge of efficiently identifying high‐yield, disease‐resistant, and climate‐resilient potato varieties that meet processing industry standards. Leveraging manually collected data from trials in the state of Oregon, we investigate the potential of a wide variety of state‐of‐the‐art binary classification models. The dataset includes 1086 clones, with data on 38 attributes recorded for each clone, focusing on yield, size, appearance, and frying characteristics, with several control varieties planted consistently across four Oregon regions from 2013 to 2021. We conduct a comprehensive analysis of the dataset that includes preprocessing, feature engineering, and imputation to address missing values. We focus on several key metrics such as accuracy, F1‐score, and Matthews correlation coefficient (MCC) for model evaluation. The top‐performing models, namely a feedforward neural network classifier (Neural Net), a histogram‐based gradient boosting classifier (HGBC), and a support vector machine classifier (SVM), demonstrate consistent and significant results. To further validate our findings, we conducted a simulation study using the aims, data‐generating mechanisms, estimands, methods, and performance measures (ADEMP) framework, simulating different data‐generating scenarios to assess model robustness and performance through true positive, true negative, false positive, and false negative distributions, area under the receiver operating characteristic curve (AUC‐ROC) and MCC. The simulation results highlight that non‐linear models like SVM and HGBC consistently show higher AUC‐ROC and MCC than logistic regression, thus outperforming the traditional linear model across various distributions, and emphasizing the importance of model selection and tuning in agricultural trials. Variable selection further enhances model performance and identifies influential features in predicting trial outcomes. The findings emphasize the potential of machine learning in streamlining the selection process for potato varieties, offering benefits such as increased efficiency, substantial cost savings, and judicious resource utilization. Our study contributes insights into precision agriculture and showcases the relevance of advanced technologies for informed decision‐making in breeding programs.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.