Junyu Wang, Hong Wang, Jiamei Wang, Guangdong Shang
{"title":"Coselection of BAC for Escherichia coli chromosomal DNA multiplex automated genome engineering.","authors":"Junyu Wang, Hong Wang, Jiamei Wang, Guangdong Shang","doi":"10.1007/s10529-024-03554-4","DOIUrl":null,"url":null,"abstract":"<p><p>Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies. However, a pre-generated strain with mutS deletion and multiple inactivated antibiotic resistance genes integration is required. Herein, CoS-MAGE was modified by employing a single copy BAC vector harboring a bla-mkan cassette and a Red helper vector cloned with dominant mutL E32K, thus bypassing the utilization of the pre-generated strain. The proof-of-concept of the new strategy, CoS-BAC-MAGE, was demonstrated via the mutation of non-essential genes, essential genes, and AT rich regions of the wild type strain E. coli MG1655. With this system, an editing efficiency of 60% was realized. Furthermore, by toggling between two antibiotic resistance genes (one active, the other defective) on the BAC, sequential mutations were achieved without the requirement of BAC vector elimination and re-transformation. Via CoS-BAC-MAGE, simultaneously mutations of three sites were obtained in a day. We envision that CoS-BAC-MAGE will be a practical improvement for the generation of chromosomal mutations using the Cos-MAGE approach.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 1","pages":"14"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03554-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies. However, a pre-generated strain with mutS deletion and multiple inactivated antibiotic resistance genes integration is required. Herein, CoS-MAGE was modified by employing a single copy BAC vector harboring a bla-mkan cassette and a Red helper vector cloned with dominant mutL E32K, thus bypassing the utilization of the pre-generated strain. The proof-of-concept of the new strategy, CoS-BAC-MAGE, was demonstrated via the mutation of non-essential genes, essential genes, and AT rich regions of the wild type strain E. coli MG1655. With this system, an editing efficiency of 60% was realized. Furthermore, by toggling between two antibiotic resistance genes (one active, the other defective) on the BAC, sequential mutations were achieved without the requirement of BAC vector elimination and re-transformation. Via CoS-BAC-MAGE, simultaneously mutations of three sites were obtained in a day. We envision that CoS-BAC-MAGE will be a practical improvement for the generation of chromosomal mutations using the Cos-MAGE approach.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.