{"title":"The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape.","authors":"Marika Peli, Stefano Ambrosini, Daniela Sorio, Fabrizia Pasquarelli, Anita Zamboni, Zeno Varanini","doi":"10.1111/ppl.70033","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-derived biostimulants have gained attention in agricultural practices for their potential to enhance crop quality and resilience. In this study, we investigated the effects of applying a maize gluten-derived protein hydrolysate at the soil level in vineyards on berry quality in a table grape variety, the Black Magic early table grapevine, during veraison. Our results demonstrate significant improvements in various parameters 14 days after application, including increased anthocyanin levels, enhanced sugar accumulation, and larger berry diameter while maintaining berry firmness. Transcriptomic analysis revealed mechanisms underlying these effects, highlighting the biostimulant's ability to expedite ripening processes while selectively modulating genes associated with cell wall metabolism, thus explaining the observed preservation of berry firmness. Furthermore, the treatment with a gluten-derived protein hydrolysate enhanced the grapevine's resilience to abiotic and biotic stresses, and several related genes were affected. This study sheds light on the potential of plant-derived biostimulants in grapevine cultivation, emphasizing the need for further research to elucidate their mechanisms and optimize agricultural practices.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70033"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70033","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-derived biostimulants have gained attention in agricultural practices for their potential to enhance crop quality and resilience. In this study, we investigated the effects of applying a maize gluten-derived protein hydrolysate at the soil level in vineyards on berry quality in a table grape variety, the Black Magic early table grapevine, during veraison. Our results demonstrate significant improvements in various parameters 14 days after application, including increased anthocyanin levels, enhanced sugar accumulation, and larger berry diameter while maintaining berry firmness. Transcriptomic analysis revealed mechanisms underlying these effects, highlighting the biostimulant's ability to expedite ripening processes while selectively modulating genes associated with cell wall metabolism, thus explaining the observed preservation of berry firmness. Furthermore, the treatment with a gluten-derived protein hydrolysate enhanced the grapevine's resilience to abiotic and biotic stresses, and several related genes were affected. This study sheds light on the potential of plant-derived biostimulants in grapevine cultivation, emphasizing the need for further research to elucidate their mechanisms and optimize agricultural practices.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.