The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2025-01-01 DOI:10.1111/ppl.70033
Marika Peli, Stefano Ambrosini, Daniela Sorio, Fabrizia Pasquarelli, Anita Zamboni, Zeno Varanini
{"title":"The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape.","authors":"Marika Peli, Stefano Ambrosini, Daniela Sorio, Fabrizia Pasquarelli, Anita Zamboni, Zeno Varanini","doi":"10.1111/ppl.70033","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-derived biostimulants have gained attention in agricultural practices for their potential to enhance crop quality and resilience. In this study, we investigated the effects of applying a maize gluten-derived protein hydrolysate at the soil level in vineyards on berry quality in a table grape variety, the Black Magic early table grapevine, during veraison. Our results demonstrate significant improvements in various parameters 14 days after application, including increased anthocyanin levels, enhanced sugar accumulation, and larger berry diameter while maintaining berry firmness. Transcriptomic analysis revealed mechanisms underlying these effects, highlighting the biostimulant's ability to expedite ripening processes while selectively modulating genes associated with cell wall metabolism, thus explaining the observed preservation of berry firmness. Furthermore, the treatment with a gluten-derived protein hydrolysate enhanced the grapevine's resilience to abiotic and biotic stresses, and several related genes were affected. This study sheds light on the potential of plant-derived biostimulants in grapevine cultivation, emphasizing the need for further research to elucidate their mechanisms and optimize agricultural practices.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70033"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70033","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-derived biostimulants have gained attention in agricultural practices for their potential to enhance crop quality and resilience. In this study, we investigated the effects of applying a maize gluten-derived protein hydrolysate at the soil level in vineyards on berry quality in a table grape variety, the Black Magic early table grapevine, during veraison. Our results demonstrate significant improvements in various parameters 14 days after application, including increased anthocyanin levels, enhanced sugar accumulation, and larger berry diameter while maintaining berry firmness. Transcriptomic analysis revealed mechanisms underlying these effects, highlighting the biostimulant's ability to expedite ripening processes while selectively modulating genes associated with cell wall metabolism, thus explaining the observed preservation of berry firmness. Furthermore, the treatment with a gluten-derived protein hydrolysate enhanced the grapevine's resilience to abiotic and biotic stresses, and several related genes were affected. This study sheds light on the potential of plant-derived biostimulants in grapevine cultivation, emphasizing the need for further research to elucidate their mechanisms and optimize agricultural practices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物源蛋白水解物的土壤应用选择性地加速了鲜食葡萄的成熟特异性过程。
植物源性生物刺激素因其提高作物质量和抗灾能力的潜力而在农业实践中受到关注。在这项研究中,我们研究了在葡萄园土壤水平上施用玉米麸质衍生蛋白水解物对一种鲜食葡萄品种黑魔早食葡萄的浆果品质的影响。我们的研究结果表明,施用14天后,各种参数都有显著改善,包括花青素水平增加,糖积累增强,浆果直径增大,同时保持浆果硬度。转录组学分析揭示了这些作用的机制,强调了生物刺激剂加速成熟过程的能力,同时选择性地调节与细胞壁代谢相关的基因,从而解释了观察到的浆果硬度的保存。此外,麸质衍生蛋白水解物处理增强了葡萄对非生物和生物胁迫的恢复能力,并且几个相关基因受到影响。这项研究揭示了植物源性生物刺激素在葡萄种植中的潜力,强调了进一步研究阐明其机制和优化农业实践的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
L-DOPA promotes cadmium tolerance and modulates iron deficiency genes in Arabidopsis thaliana. Differences in drought avoidance rather than differences in the fast versus slow growth spectrum explain distributions of two Asclepias species. The Malectin-like kinase gene MdMDS1 negatively regulates the resistance of Pyrus betulifolia to Valsa canker by promoting the expression of PbePME1. Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding. The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1