Evaluation of Color Difference Models for Wide Color Gamut and High Dynamic Range.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2024-12-10 DOI:10.3390/jimaging10120317
Olga Basova, Sergey Gladilin, Vladislav Kokhan, Mikhalina Kharkevich, Anastasia Sarycheva, Ivan Konovalenko, Mikhail Chobanu, Ilya Nikolaev
{"title":"Evaluation of Color Difference Models for Wide Color Gamut and High Dynamic Range.","authors":"Olga Basova, Sergey Gladilin, Vladislav Kokhan, Mikhalina Kharkevich, Anastasia Sarycheva, Ivan Konovalenko, Mikhail Chobanu, Ilya Nikolaev","doi":"10.3390/jimaging10120317","DOIUrl":null,"url":null,"abstract":"<p><p>Color difference models (CDMs) are essential for accurate color reproduction in image processing. While CDMs aim to reflect perceived color differences (CDs) from psychophysical data, they remain largely untested in wide color gamut (WCG) and high dynamic range (HDR) contexts, which are underrepresented in current datasets. This gap highlights the need to validate CDMs across WCG and HDR. Moreover, the non-geodesic structure of perceptual color space necessitates datasets covering CDs of various magnitudes, while most existing datasets emphasize only small and threshold CDs. To address this, we collected a new dataset encompassing a broad range of CDs in WCG and HDR contexts and developed a novel CDM fitted to these data. Benchmarking various CDMs using STRESS and significant error fractions on both new and established datasets reveals that CAM16-UCS with power correction is the most versatile model, delivering strong average performance across WCG colors up to 1611 cd/m<sup>2</sup>. However, even the best CDM fails to achieve the desired accuracy limits and yields significant errors. CAM16-UCS, though promising, requires further refinement, particularly in its power correction component to better capture the non-geodesic structure of perceptual color space.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10120317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Color difference models (CDMs) are essential for accurate color reproduction in image processing. While CDMs aim to reflect perceived color differences (CDs) from psychophysical data, they remain largely untested in wide color gamut (WCG) and high dynamic range (HDR) contexts, which are underrepresented in current datasets. This gap highlights the need to validate CDMs across WCG and HDR. Moreover, the non-geodesic structure of perceptual color space necessitates datasets covering CDs of various magnitudes, while most existing datasets emphasize only small and threshold CDs. To address this, we collected a new dataset encompassing a broad range of CDs in WCG and HDR contexts and developed a novel CDM fitted to these data. Benchmarking various CDMs using STRESS and significant error fractions on both new and established datasets reveals that CAM16-UCS with power correction is the most versatile model, delivering strong average performance across WCG colors up to 1611 cd/m2. However, even the best CDM fails to achieve the desired accuracy limits and yields significant errors. CAM16-UCS, though promising, requires further refinement, particularly in its power correction component to better capture the non-geodesic structure of perceptual color space.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大色域和高动态范围的色差模型评价。
色差模型(CDMs)是图像处理中精确再现色彩的关键。虽然CDMs旨在反映心理物理数据中的感知色差(cd),但它们在当前数据集中代表性不足的宽色域(WCG)和高动态范围(HDR)环境中仍未得到很大程度的测试。这一差距凸显了跨WCG和HDR验证cdm的必要性。此外,感知色彩空间的非测地线结构需要涵盖各种大小cd的数据集,而大多数现有数据集只强调小cd和阈值cd。为了解决这个问题,我们收集了一个新的数据集,其中包括WCG和HDR背景下的广泛cd,并开发了一个适合这些数据的新型CDM。在新的和已建立的数据集上使用STRESS和显着误差分数对各种cdm进行基准测试,结果表明具有功率校正的CAM16-UCS是最通用的模型,在WCG颜色上提供强大的平均性能,最高可达1611 cd/m2。然而,即使是最好的CDM也不能达到期望的精度限制,并产生显著的误差。CAM16-UCS虽然很有前景,但需要进一步改进,特别是在其功率校正组件上,以更好地捕捉感知色彩空间的非测地线结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Air quality and health benefits of China’s current and upcoming clean air policies†
IF 3.4 3区 化学Faraday DiscussionsPub Date : 2020-08-12 DOI: 10.1039/D0FD00090F
Jing Cheng, Dan Tong, Yang Liu, Yu Bo, Bo Zheng, Guannan Geng, Kebin He and Qiang Zhang
Health and economic benefits of clean air policies in China: A case study for Beijing-Tianjin-Hebei region.
IF 8.9 2区 化学ACS Applied Polymer MaterialsPub Date : 2021-09-15 DOI: 10.1016/j.envpol.2021.117525
Meng Xu, Zhongfeng Qin, Shaohui Zhang, Yang Xie
Air quality and health benefits of China’s current and upcoming clean air policies†
IF 3.4 3区 化学Faraday DiscussionsPub Date : 2020-08-12 DOI: 10.1039/D0FD00090F
Jing Cheng, Dan Tong, Yang Liu, Yu Bo, Bo Zheng, Guannan Geng, Kebin He and Qiang Zhang
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
Machine Learning for Human Activity Recognition: State-of-the-Art Techniques and Emerging Trends. Recovering Image Quality in Low-Dose Pediatric Renal Scintigraphy Using Deep Learning. Synergy of Art, Science, and Technology: A Case Study of Augmented Reality and Artificial Intelligence in Enhancing Cultural Heritage Engagement. The Effect of Simulated Dose Reduction on the Performance of Artificial Intelligence in Chest Radiography. Advances in Optical Contrast Agents for Medical Imaging: Fluorescent Probes and Molecular Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1