Transparent and Durable Terahertz Absorber Based on Enhanced Wave-Ion Interaction

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-12-29 DOI:10.1002/adfm.202418541
Wenke Xie, Jinlong Xie, Sitong Li, Jiateng Liu, Xu Xiao, Qiye Wen, Tianpeng Ding
{"title":"Transparent and Durable Terahertz Absorber Based on Enhanced Wave-Ion Interaction","authors":"Wenke Xie,&nbsp;Jinlong Xie,&nbsp;Sitong Li,&nbsp;Jiateng Liu,&nbsp;Xu Xiao,&nbsp;Qiye Wen,&nbsp;Tianpeng Ding","doi":"10.1002/adfm.202418541","DOIUrl":null,"url":null,"abstract":"<p>Hydrogels, featuring high flexibility and stretchability, have intense wave-matter interaction in the terahertz (THz) band and high transparency in the visible light band, making them promising materials for transparent THz absorbers in the optical windows of THz devices. However, conventional hydrogels suffer from poor environmental stability, as water evaporation or freezing at subzero temperatures weakens their THz absorption and visible transmittance. Here, An ion-rich hydrogel film is presented to concurrently boost the THz wave-ion and intermolecular interactions. The boosted interactions increase the ionic conduction loss and improve the antidrying and antifreezing performance. As a result, with polydimethylsiloxane (PDMS) as the encapsulation layer and antireflection layer, the flexible ionic-hydrogel-based THz absorber shows a high maximum reflection loss (RL) of 86.51 dB in the 0.5–4.5 THz range (100% qualified bandwidth) and a high average visible transmittance of 90.87% with a thickness of only 300 µm. Moreover, it still possesses a high average RL of 39.35 dB after 80 days at room temperature and a high average electromagnetic interference shielding efficiency (EMI SE) of 42.30 dB at −10 °C. This work demonstrates the feasibility of transparent ionic THz absorbers, offering inspiration for future ionic THz device designs.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 19","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202418541","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels, featuring high flexibility and stretchability, have intense wave-matter interaction in the terahertz (THz) band and high transparency in the visible light band, making them promising materials for transparent THz absorbers in the optical windows of THz devices. However, conventional hydrogels suffer from poor environmental stability, as water evaporation or freezing at subzero temperatures weakens their THz absorption and visible transmittance. Here, An ion-rich hydrogel film is presented to concurrently boost the THz wave-ion and intermolecular interactions. The boosted interactions increase the ionic conduction loss and improve the antidrying and antifreezing performance. As a result, with polydimethylsiloxane (PDMS) as the encapsulation layer and antireflection layer, the flexible ionic-hydrogel-based THz absorber shows a high maximum reflection loss (RL) of 86.51 dB in the 0.5–4.5 THz range (100% qualified bandwidth) and a high average visible transmittance of 90.87% with a thickness of only 300 µm. Moreover, it still possesses a high average RL of 39.35 dB after 80 days at room temperature and a high average electromagnetic interference shielding efficiency (EMI SE) of 42.30 dB at −10 °C. This work demonstrates the feasibility of transparent ionic THz absorbers, offering inspiration for future ionic THz device designs.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增强波离子相互作用的透明耐用太赫兹吸收体
水凝胶具有高柔韧性和可拉伸性,在太赫兹(THz)波段具有强烈的波物相互作用,在可见光波段具有高透明度,是太赫兹器件光学窗口中透明太赫兹吸收器的理想材料。然而,传统的水凝胶环境稳定性差,因为水在零度以下的温度下蒸发或冻结会削弱其太赫兹吸收和可见光透过率。本文提出了一种富离子水凝胶膜,可同时增强太赫兹波与离子和分子间的相互作用。增强的相互作用增加了离子传导损失,提高了抗干燥和抗冻性能。结果表明,以聚二甲基硅氧烷(PDMS)为包封层和增透层的柔性离子水凝胶基太赫兹吸收材料,在0.5 ~ 4.5太赫兹(100%合格带宽)范围内,最大反射损耗(RL)高达86.51 dB,平均可见光透过率高达90.87%,厚度仅为300µm。此外,在室温下80天后,其平均RL仍高达39.35 dB,在−10℃时,其平均电磁干扰屏蔽效率(EMI SE)高达42.30 dB。这项工作证明了透明离子太赫兹吸收器的可行性,为未来离子太赫兹器件的设计提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
lithium chloride
阿拉丁
2-hyroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone
阿拉丁
N, N′-methylenebis (acrylamide) (MBA)
阿拉丁
Acrylamide (AAM)
阿拉丁
lithium chloride
阿拉丁
2-hyroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone
阿拉丁
N, N′-methylenebis (acrylamide) (MBA)
阿拉丁
Acrylamide (AAM)
阿拉丁
lithium chloride
阿拉丁
2-hyroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone
阿拉丁
N, N′-methylenebis (acrylamide) (MBA)
阿拉丁
Acrylamide (AAM)
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Boosting the Direct Coupling of CH4 to C2H4 via Plasma Catalysis over CuO/ZrO2-Al2O3 Catalyst Nd3+ Doping Induced Anti-Thermal Quenching in Rare-Earth Lead-Free Halide Double Perovskite Toward High-Resolution X-Ray Imaging Differential Chloride Affinity Over Amorphous‐Crystalline Interfaces Drives Asymmetric C─C Coupling for Neutral CO 2 Electroreduction to Ethanol Dense Nanofibrillar Collagen–Silica Hybrids with High Strength and ECM‐Mimetic Tissue Integration Understanding and Tuning Mobile Interfaces in Ferroelectric Hf 0.5 Zr 0.5 O 2 Thin Films in Relation to Microstructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1