Light‐Driven Ion Intercalation in Carbon Nitride for High‐Temperature‐Resilient Information Storage and Encryption

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-07 DOI:10.1002/adfm.202423300
Shuai Zhang, Lingqiao Kong, Bingzhen Yan, Long Ma, Qiushi Ruan
{"title":"Light‐Driven Ion Intercalation in Carbon Nitride for High‐Temperature‐Resilient Information Storage and Encryption","authors":"Shuai Zhang, Lingqiao Kong, Bingzhen Yan, Long Ma, Qiushi Ruan","doi":"10.1002/adfm.202423300","DOIUrl":null,"url":null,"abstract":"Information storage and encryption systems often suffer from degradation and instability at elevated temperatures. This work introduces a robust ion‐based information storage and encryption system that demonstrates exceptional temperature resistance up to 350 °C, achieved through the immobilization of monoatomic cations (Li<jats:sup>+</jats:sup>, Na<jats:sup>+</jats:sup>, and K<jats:sup>+</jats:sup>) in carbon nitride via light exposure. By creating electron trap states within the carbon nitride matrix, light exposure enables photo‐charging of the material, transforming it into a capacitor capable of dynamic, reversible color changes for encoding and encrypting information. Notably, the ionic state of the material serves as the foundation for data storage, offering an inherent security feature where trapped electrons are quenched upon air exposure. This encrypted information can be reactivated through light charging. This study establishes a novel paradigm for high‐temperature information storage, using light to control ion movement with precision and security.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"10 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202423300","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Information storage and encryption systems often suffer from degradation and instability at elevated temperatures. This work introduces a robust ion‐based information storage and encryption system that demonstrates exceptional temperature resistance up to 350 °C, achieved through the immobilization of monoatomic cations (Li+, Na+, and K+) in carbon nitride via light exposure. By creating electron trap states within the carbon nitride matrix, light exposure enables photo‐charging of the material, transforming it into a capacitor capable of dynamic, reversible color changes for encoding and encrypting information. Notably, the ionic state of the material serves as the foundation for data storage, offering an inherent security feature where trapped electrons are quenched upon air exposure. This encrypted information can be reactivated through light charging. This study establishes a novel paradigm for high‐temperature information storage, using light to control ion movement with precision and security.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息存储和加密系统在高温下往往会出现降解和不稳定的问题。这项研究通过光照射将单原子阳离子(Li+、Na+ 和 K+)固定在氮化碳中,引入了一种基于离子的强大信息存储和加密系统,该系统具有高达 350 ℃ 的超强耐温性。通过在氮化碳基体中形成电子阱态,光照射可使材料产生光充电,从而将其转化为一种能够动态、可逆地改变颜色的电容器,用于编码和加密信息。值得注意的是,这种材料的离子态是数据存储的基础,具有固有的安全特性,在空气中曝光后,被俘获的电子会被淬灭。这种加密信息可通过光充电重新激活。这项研究为高温信息存储建立了一个新的范例,利用光来控制离子运动,既精确又安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Revisiting Cobalt Dopability in GeTe System to Design Modulation‐Doped Thermoelectrics Light‐Driven Ion Intercalation in Carbon Nitride for High‐Temperature‐Resilient Information Storage and Encryption Hierarchical Spin-Polarized Nanosheet Array for Boosting Ampere-Level Water Oxidation Under Magnetic Field A Fractal-Like Hierarchical Bionic Scaffold for Osseointegration Facile Interface Engineering Enabled Efficient and Stable Self-Powered Perovskite Photodetectors for Versatile Photosensing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1