Haifan Li, Quan Quan, Hongliang Dong, Yuxuan Zhang, Pengshan Xie, Dong Chen, Di Yin, Chun-Yuen Wong, Johnny C. Ho
{"title":"Hierarchical Spin-Polarized Nanosheet Array for Boosting Ampere-Level Water Oxidation Under Magnetic Field","authors":"Haifan Li, Quan Quan, Hongliang Dong, Yuxuan Zhang, Pengshan Xie, Dong Chen, Di Yin, Chun-Yuen Wong, Johnny C. Ho","doi":"10.1002/adfm.202420810","DOIUrl":null,"url":null,"abstract":"The spin-polarization strategy by manipulating magnetic electrocatalysts can promote the spin-sensitive oxygen evolution reaction (OER) while developing efficient spin-polarized materials toward ampere-level OER is still challenging. Herein, a hierarchical inter-doped (Ru-Ni)O<i><sub>x</sub></i> nanosheet array in situ grown on nickel foam is designed, which exhibits a distinguished overpotential of 286 mV at 1 A cm<sup>−2</sup> under 0.4 T magnetic field and a steady lifespan of 200 h at the ampere current density (i.e., 1 A cm<sup>−2</sup>), outperforming most reported state-of-art spin-selective OER catalysts in alkaline electrolytes Integrating intrinsic and interfacial spin-polarization on the inter-doped (Ru-Ni)O<i><sub>x</sub></i> nanosheet array can significantly boost the catalytic activity for ampere-level OER under a magnetic field. Specifically, the spin-aligned Ru sites optimize the rate-determined O─O coupling step to reduce the thermodynamic barrier of OER. Meanwhile, the charge transfer kinetics is promoted due to the accelerating spin-selective electron transfer via spin pinning at the ferromagnetic-antiferromagnetic interface. The design of a hierarchical spin-polarized structure that integrates intrinsic and interfacial spin-polarization strategies provides an additional route to developing a spin-polarized OER catalyst capable of serving ampere current densities.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420810","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The spin-polarization strategy by manipulating magnetic electrocatalysts can promote the spin-sensitive oxygen evolution reaction (OER) while developing efficient spin-polarized materials toward ampere-level OER is still challenging. Herein, a hierarchical inter-doped (Ru-Ni)Ox nanosheet array in situ grown on nickel foam is designed, which exhibits a distinguished overpotential of 286 mV at 1 A cm−2 under 0.4 T magnetic field and a steady lifespan of 200 h at the ampere current density (i.e., 1 A cm−2), outperforming most reported state-of-art spin-selective OER catalysts in alkaline electrolytes Integrating intrinsic and interfacial spin-polarization on the inter-doped (Ru-Ni)Ox nanosheet array can significantly boost the catalytic activity for ampere-level OER under a magnetic field. Specifically, the spin-aligned Ru sites optimize the rate-determined O─O coupling step to reduce the thermodynamic barrier of OER. Meanwhile, the charge transfer kinetics is promoted due to the accelerating spin-selective electron transfer via spin pinning at the ferromagnetic-antiferromagnetic interface. The design of a hierarchical spin-polarized structure that integrates intrinsic and interfacial spin-polarization strategies provides an additional route to developing a spin-polarized OER catalyst capable of serving ampere current densities.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.