Hierarchical Spin-Polarized Nanosheet Array for Boosting Ampere-Level Water Oxidation Under Magnetic Field

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-07 DOI:10.1002/adfm.202420810
Haifan Li, Quan Quan, Hongliang Dong, Yuxuan Zhang, Pengshan Xie, Dong Chen, Di Yin, Chun-Yuen Wong, Johnny C. Ho
{"title":"Hierarchical Spin-Polarized Nanosheet Array for Boosting Ampere-Level Water Oxidation Under Magnetic Field","authors":"Haifan Li, Quan Quan, Hongliang Dong, Yuxuan Zhang, Pengshan Xie, Dong Chen, Di Yin, Chun-Yuen Wong, Johnny C. Ho","doi":"10.1002/adfm.202420810","DOIUrl":null,"url":null,"abstract":"The spin-polarization strategy by manipulating magnetic electrocatalysts can promote the spin-sensitive oxygen evolution reaction (OER) while developing efficient spin-polarized materials toward ampere-level OER is still challenging. Herein, a hierarchical inter-doped (Ru-Ni)O<i><sub>x</sub></i> nanosheet array in situ grown on nickel foam is designed, which exhibits a distinguished overpotential of 286 mV at 1 A cm<sup>−2</sup> under 0.4 T magnetic field and a steady lifespan of 200 h at the ampere current density (i.e., 1 A cm<sup>−2</sup>), outperforming most reported state-of-art spin-selective OER catalysts in alkaline electrolytes Integrating intrinsic and interfacial spin-polarization on the inter-doped (Ru-Ni)O<i><sub>x</sub></i> nanosheet array can significantly boost the catalytic activity for ampere-level OER under a magnetic field. Specifically, the spin-aligned Ru sites optimize the rate-determined O─O coupling step to reduce the thermodynamic barrier of OER. Meanwhile, the charge transfer kinetics is promoted due to the accelerating spin-selective electron transfer via spin pinning at the ferromagnetic-antiferromagnetic interface. The design of a hierarchical spin-polarized structure that integrates intrinsic and interfacial spin-polarization strategies provides an additional route to developing a spin-polarized OER catalyst capable of serving ampere current densities.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420810","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The spin-polarization strategy by manipulating magnetic electrocatalysts can promote the spin-sensitive oxygen evolution reaction (OER) while developing efficient spin-polarized materials toward ampere-level OER is still challenging. Herein, a hierarchical inter-doped (Ru-Ni)Ox nanosheet array in situ grown on nickel foam is designed, which exhibits a distinguished overpotential of 286 mV at 1 A cm−2 under 0.4 T magnetic field and a steady lifespan of 200 h at the ampere current density (i.e., 1 A cm−2), outperforming most reported state-of-art spin-selective OER catalysts in alkaline electrolytes Integrating intrinsic and interfacial spin-polarization on the inter-doped (Ru-Ni)Ox nanosheet array can significantly boost the catalytic activity for ampere-level OER under a magnetic field. Specifically, the spin-aligned Ru sites optimize the rate-determined O─O coupling step to reduce the thermodynamic barrier of OER. Meanwhile, the charge transfer kinetics is promoted due to the accelerating spin-selective electron transfer via spin pinning at the ferromagnetic-antiferromagnetic interface. The design of a hierarchical spin-polarized structure that integrates intrinsic and interfacial spin-polarization strategies provides an additional route to developing a spin-polarized OER catalyst capable of serving ampere current densities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层状自旋极化纳米片阵列在磁场下促进安培级水氧化
操纵磁性电催化剂的自旋极化策略可以促进自旋敏感析氧反应(OER),但开发高效的自旋极化材料达到安培级OER仍是一个挑战。本文设计了一种在泡沫镍上生长的层次化互掺杂(Ru-Ni)Ox纳米片阵列,该阵列在0.4 T磁场下,在1 a cm−2时的显著过电位为286 mV,在安培电流密度(即1 a cm−2)下的稳定寿命为200 h。在互掺杂(Ru-Ni)Ox纳米片阵列上集成本征和界面自旋极化可以显著提高磁场下对安培级OER的催化活性。具体来说,自旋排列的Ru位点优化了速率决定的O─O耦合步骤,从而降低了OER的热力学势垒。同时,在铁磁-反铁磁界面处,自旋钉钉加速了自旋选择性电子转移,促进了电荷转移动力学。层叠自旋极化结构的设计集成了本禀自旋极化和界面自旋极化策略,为开发能够服务于安培电流密度的自旋极化OER催化剂提供了一条额外的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Coherent Single-Atom Dipole–Dipole Coupling Mediates Holistic Regulation of K+ Migration for Superior Energy Storage and Dendrite-Free Metal Deposition Optical Control of Ferroelectric Imprint in BiFeO3 Activation of Semiconductor/Electrocatalyst/Electrolyte Interfaces Through Ligand Engineering for Boosting Photoelectrochemical Water Splitting Heterostructure-Derived Heterovalent Fe(OH)2/Fe Pair Sites: Tuning Adsorption of Intermediates and Enhancing Utilization of Atomic *H for Efficient Nitrate Reduction to Ammonia Janus Membrane for Simultaneous Water Purification and Power Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1