Dual-Modal Memory Enabled by a Single Vertical N-Type Organic Artificial Synapse for Neuromorphic Computing

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-12-31 DOI:10.1021/acsami.4c14555
Zhichao Xie, Chenyu Zhuge, Chunyang Li, Yanfei Zhao, Jiandong Jiang, Jianhong Zhou, Yujun Fu, Yingtao Li, Zhuang Xie, Qi Wang, Lin Lu, Yazhou Wang, Wan Yue, Deyan He
{"title":"Dual-Modal Memory Enabled by a Single Vertical N-Type Organic Artificial Synapse for Neuromorphic Computing","authors":"Zhichao Xie, Chenyu Zhuge, Chunyang Li, Yanfei Zhao, Jiandong Jiang, Jianhong Zhou, Yujun Fu, Yingtao Li, Zhuang Xie, Qi Wang, Lin Lu, Yazhou Wang, Wan Yue, Deyan He","doi":"10.1021/acsami.4c14555","DOIUrl":null,"url":null,"abstract":"Complementary neural network circuits combining multifunctional high-performance p-type with n-type organic artificial synapses satisfy sophisticated applications such as image cognition and prosthesis control. However, implementing the dual-modal memory features that are both volatile and nonvolatile in a synaptic transistor is challenging. Herein, for the first time, we propose a single vertical n-type organic synaptic transistor (VNOST) with a novel polymeric organic mixed ionic-electronic conductor as the core channel material to achieve dual-modal synaptic learning/memory behaviors at different operating current densities via the formation of an electric double layer and the reversible ion doping. As a volatile synaptic device, the resulting VNOST demonstrated an unprecedented operating current density of MA cm<sup>–2</sup>. Meanwhile, it is capable of 150 analog states, symmetric conductance modulation, and good state retention (100 s) for a nonvolatile synapse. Importantly, the artificial neural networks (ANNs) for recognition accuracy of the handwritten digital data sets recognition rate up to 94% based on its nonvolatile feature. This study provides a promising platform for building organic neuromorphic network circuits in complex application scenarios where high-performing n-type organic synapse transistors with dual-mode memory characters are necessitated.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"1 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14555","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Complementary neural network circuits combining multifunctional high-performance p-type with n-type organic artificial synapses satisfy sophisticated applications such as image cognition and prosthesis control. However, implementing the dual-modal memory features that are both volatile and nonvolatile in a synaptic transistor is challenging. Herein, for the first time, we propose a single vertical n-type organic synaptic transistor (VNOST) with a novel polymeric organic mixed ionic-electronic conductor as the core channel material to achieve dual-modal synaptic learning/memory behaviors at different operating current densities via the formation of an electric double layer and the reversible ion doping. As a volatile synaptic device, the resulting VNOST demonstrated an unprecedented operating current density of MA cm–2. Meanwhile, it is capable of 150 analog states, symmetric conductance modulation, and good state retention (100 s) for a nonvolatile synapse. Importantly, the artificial neural networks (ANNs) for recognition accuracy of the handwritten digital data sets recognition rate up to 94% based on its nonvolatile feature. This study provides a promising platform for building organic neuromorphic network circuits in complex application scenarios where high-performing n-type organic synapse transistors with dual-mode memory characters are necessitated.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Adaptive Radiative Thermal Management Using Transparent, Flexible Ag Nanowire Networks Source Material Design for Realizing >50% Indium-Saving Transparent Electrode toward Sustainable Development of Silicon Heterojunction Solar Cells Acetonitrile-Based Highly Concentrated Electrolytes for High-Power Organic Sodium-Ion Batteries Flexible Passive Wireless Sensing Platform with Frequency Mapping and Multimodal Fusion Endurable IGZO/SnSx/IGZO Heterojunction Phototransistor Arrays for Image Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1