{"title":"Acetonitrile-Based Highly Concentrated Electrolytes for High-Power Organic Sodium-Ion Batteries","authors":"Yoshiyuki Gambe, Hiroaki Kobayashi, Itaru Honma","doi":"10.1021/acsami.4c16866","DOIUrl":null,"url":null,"abstract":"Sodium croconate, a high-voltage organic cathode material, can be applied to high-energy-density and cost-effective organic sodium-ion batteries (OSIBs) as an alternative to traditional lithium-ion batteries. However, organic molecular cathodes generally dissolve into the electrolyte, leading to poor cyclability. Thus, an electrolyte that can address the present limitations and further facilitate the fabrication of highly reversible OSIBs must be developed. To address this gap in the literature, in this study, we demonstrate an acetonitrile (AN)-based highly concentrated electrolyte (HCE) with sodium bis(fluorosulfonyl)imide (NaFSI). This electrolyte has an ionic conductivity of 12.1 mS cm<sup>–1</sup>, which is higher than those of previously reported HCEs. Moreover, the developed HCE (NaFSI:AN molar ratio of 1:2.7) exhibits a high Na<sup>+</sup> transference number of 0.49. A full-cell OSIB bearing this electrolyte demonstrates high-power operation with improved capacity retention. The solvent-free electrolyte with the solvation structure of the [2Na<sup>+</sup>-FSI<sup>–</sup>] aggregate suppresses the dissolution of organic molecules, leading to their high performance.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"9 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16866","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium croconate, a high-voltage organic cathode material, can be applied to high-energy-density and cost-effective organic sodium-ion batteries (OSIBs) as an alternative to traditional lithium-ion batteries. However, organic molecular cathodes generally dissolve into the electrolyte, leading to poor cyclability. Thus, an electrolyte that can address the present limitations and further facilitate the fabrication of highly reversible OSIBs must be developed. To address this gap in the literature, in this study, we demonstrate an acetonitrile (AN)-based highly concentrated electrolyte (HCE) with sodium bis(fluorosulfonyl)imide (NaFSI). This electrolyte has an ionic conductivity of 12.1 mS cm–1, which is higher than those of previously reported HCEs. Moreover, the developed HCE (NaFSI:AN molar ratio of 1:2.7) exhibits a high Na+ transference number of 0.49. A full-cell OSIB bearing this electrolyte demonstrates high-power operation with improved capacity retention. The solvent-free electrolyte with the solvation structure of the [2Na+-FSI–] aggregate suppresses the dissolution of organic molecules, leading to their high performance.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.