{"title":"Controllable Damping Boring Tool Based on Magnetorheological Elastomer","authors":"Xuhui Liu;Bin Wan;Bin Xu;Jing Qi;Xingyu He;Zheng Zhou;Yan Wu","doi":"10.1109/LMAG.2024.3490385","DOIUrl":null,"url":null,"abstract":"To address the prevalent issue of vibrations in long boring tools with a significant length-to-diameter ratio, we have developed a novel controllable damping boring tool. This innovative tool leverages the unique properties of magnetorheological elastomers (MREs) to counteract vibrations effectively. Using ANSYS software, we analyzed the magnetic field within the tool, revealing a direct link between excitation current and magnetic induction intensity within the MRE. Concurrently, experiments confirmed a strong correlation between magnetic induction and the MRE's elastic modulus, highlighting the material's tunable stiffness under varying magnetic fields. Further investigation through modal and harmonic response analyses has unveiled that augmenting the MRE's elastic modulus achieves two objectives. First, it raises the natural frequency of the boring tool. Second, and perhaps more importantly, it significantly diminishes the tool's response amplitude to vibrations. To illustrate, at an excitation current of 0 A, our measurements recorded a response amplitude of 0.31504 mm for the controllable damping boring tool. Furthermore, when the excitation current was increased to 1 A, the response amplitude was notably reduced to 0.1523 mm. These compelling results highlight the MRE controllable damping boring tool's exceptional dynamic adjustment capabilities and its remarkable efficacy in vibration suppression.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10740650/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To address the prevalent issue of vibrations in long boring tools with a significant length-to-diameter ratio, we have developed a novel controllable damping boring tool. This innovative tool leverages the unique properties of magnetorheological elastomers (MREs) to counteract vibrations effectively. Using ANSYS software, we analyzed the magnetic field within the tool, revealing a direct link between excitation current and magnetic induction intensity within the MRE. Concurrently, experiments confirmed a strong correlation between magnetic induction and the MRE's elastic modulus, highlighting the material's tunable stiffness under varying magnetic fields. Further investigation through modal and harmonic response analyses has unveiled that augmenting the MRE's elastic modulus achieves two objectives. First, it raises the natural frequency of the boring tool. Second, and perhaps more importantly, it significantly diminishes the tool's response amplitude to vibrations. To illustrate, at an excitation current of 0 A, our measurements recorded a response amplitude of 0.31504 mm for the controllable damping boring tool. Furthermore, when the excitation current was increased to 1 A, the response amplitude was notably reduced to 0.1523 mm. These compelling results highlight the MRE controllable damping boring tool's exceptional dynamic adjustment capabilities and its remarkable efficacy in vibration suppression.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.