Integration of Optical Coherence Tomography Images and Real-Life Clinical Data for Deep Learning Modeling: A Unified Approach in Prognostication of Diabetic Macular Edema.

Muhammed Enes Atik, İbrahim Kocak, Nihat Sayin, Sadik Etka Bayramoglu, Ahmet Ozyigit
{"title":"Integration of Optical Coherence Tomography Images and Real-Life Clinical Data for Deep Learning Modeling: A Unified Approach in Prognostication of Diabetic Macular Edema.","authors":"Muhammed Enes Atik, İbrahim Kocak, Nihat Sayin, Sadik Etka Bayramoglu, Ahmet Ozyigit","doi":"10.1002/jbio.202400315","DOIUrl":null,"url":null,"abstract":"<p><p>The primary ocular effect of diabetes is diabetic retinopathy (DR), which is associated with diabetic microangiopathy. Diabetic macular edema (DME) can cause vision loss for people with DR. For this reason, deciding on the appropriate treatment and follow-up has a critical role in terms of curing the disease. Current artificial intelligence (AI) approaches focus on OCT images and may ignore clinical, laboratory, and demographic information obtained by the specialist. This study presents a novel deep learning (DL) framework for evaluating the visual outcome of the TREX anti-VEGF intravitreal injection regimen. DL models are trained to extract deep features from OCT and ILM topographic images and the obtained deep features are combined with patients' demographic, clinical, and laboratory findings to predict the direction of the treatment process. When the ResNet-18 network is used, the proposed DL framework is able to predict the prognosis status of patients with the highest accuracy.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400315"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primary ocular effect of diabetes is diabetic retinopathy (DR), which is associated with diabetic microangiopathy. Diabetic macular edema (DME) can cause vision loss for people with DR. For this reason, deciding on the appropriate treatment and follow-up has a critical role in terms of curing the disease. Current artificial intelligence (AI) approaches focus on OCT images and may ignore clinical, laboratory, and demographic information obtained by the specialist. This study presents a novel deep learning (DL) framework for evaluating the visual outcome of the TREX anti-VEGF intravitreal injection regimen. DL models are trained to extract deep features from OCT and ILM topographic images and the obtained deep features are combined with patients' demographic, clinical, and laboratory findings to predict the direction of the treatment process. When the ResNet-18 network is used, the proposed DL framework is able to predict the prognosis status of patients with the highest accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合光学相干断层扫描图像和真实临床数据的深度学习建模:糖尿病黄斑水肿预后的统一方法。
糖尿病的主要眼部影响是糖尿病视网膜病变(DR),这与糖尿病微血管病变有关。糖尿病性黄斑水肿(DME)可导致dr患者视力丧失,因此,决定适当的治疗和随访对治疗该疾病具有关键作用。目前的人工智能(AI)方法侧重于OCT图像,可能会忽略专家获得的临床、实验室和人口统计信息。本研究提出了一个新的深度学习(DL)框架,用于评估TREX抗vegf玻璃体内注射方案的视觉效果。DL模型经过训练,从OCT和ILM地形图像中提取深度特征,并将获得的深度特征与患者的人口统计学、临床和实验室结果相结合,以预测治疗过程的方向。当使用ResNet-18网络时,所提出的深度学习框架能够以最高的准确率预测患者的预后状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Non-invasive Lung Disease Study of Exhaled Breath Nitric Oxide Based on Ultraviolet Differential Absorption Spectroscopy Techniques. Deep Learning and Hyperspectral Imaging for Liver Cancer Staging and Cirrhosis Differentiation. Diabetes Mellitus Impairs Blood-Brain Barrier Integrality and Microglial Reactivity. Optical Based Methods for Water Monitoring in Biological Tissue. Enhancing Functional Breast Imaging: A sCMOS Camera-Based Lock-in Implementation for Dynamic Tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1