Deep Learning and Hyperspectral Imaging for Liver Cancer Staging and Cirrhosis Differentiation.

Tianyi Hang, Danfeng Fan, Tiefeng Sun, Zhengyuan Chen, Xiaoqing Yang, Xiaoqing Yue
{"title":"Deep Learning and Hyperspectral Imaging for Liver Cancer Staging and Cirrhosis Differentiation.","authors":"Tianyi Hang, Danfeng Fan, Tiefeng Sun, Zhengyuan Chen, Xiaoqing Yang, Xiaoqing Yue","doi":"10.1002/jbio.202400557","DOIUrl":null,"url":null,"abstract":"<p><p>Liver malignancies, particularly hepatocellular carcinoma (HCC), pose a formidable global health challenge. Conventional diagnostic techniques frequently fall short in precision, especially at advanced HCC stages. In response, we have developed a novel diagnostic strategy that integrates hyperspectral imaging with deep learning. This innovative approach captures detailed spectral data from tissue samples, pinpointing subtle cellular differences that elude traditional methods. A sophisticated deep convolutional neural network processes this data, effectively distinguishing high-grade liver cancer from cirrhosis with an accuracy of 89.45%, a sensitivity of 90.29%, and a specificity of 88.64%. For HCC differentiation specifically, it achieves an impressive accuracy of 93.73%, sensitivity of 92.53%, and specificity of 90.07%. Our results underscore the potential of this technique as a precise, rapid, and non-invasive diagnostic tool that surpasses existing clinical methods in staging liver cancer and differentiating cirrhosis.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400557"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Liver malignancies, particularly hepatocellular carcinoma (HCC), pose a formidable global health challenge. Conventional diagnostic techniques frequently fall short in precision, especially at advanced HCC stages. In response, we have developed a novel diagnostic strategy that integrates hyperspectral imaging with deep learning. This innovative approach captures detailed spectral data from tissue samples, pinpointing subtle cellular differences that elude traditional methods. A sophisticated deep convolutional neural network processes this data, effectively distinguishing high-grade liver cancer from cirrhosis with an accuracy of 89.45%, a sensitivity of 90.29%, and a specificity of 88.64%. For HCC differentiation specifically, it achieves an impressive accuracy of 93.73%, sensitivity of 92.53%, and specificity of 90.07%. Our results underscore the potential of this technique as a precise, rapid, and non-invasive diagnostic tool that surpasses existing clinical methods in staging liver cancer and differentiating cirrhosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diagnosis and Post-Treatment Follow-Up Evaluation of Melasma Using Optical Coherence Tomography and Deep Learning. The Combination of Active-Targeted Photodynamic Therapy and Photoactivated Chemotherapy for Enhanced Cancer Treatment. Optomechanical Properties of Swine Skin Tissue Treated With a Nontoxic Optical Clearing Agent. Compact Monocular Video-Ophthalmoscope to Measure Retinal Reflectance Changes to Flicker Light Stimuli. Noncontact Detection of Blood Coagulation Dynamics Based on Speckle Deviation Analysis Using Optical Coherence Tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1