{"title":"Binding mechanisms of intrinsically disordered proteins: Insights from experimental studies and structural predictions","authors":"Thibault Orand, Malene Ringkjøbing Jensen","doi":"10.1016/j.sbi.2024.102958","DOIUrl":null,"url":null,"abstract":"<div><div>Advances in the characterization of intrinsically disordered proteins (IDPs) have unveiled a remarkably complex and diverse interaction landscape, including coupled folding and binding, highly dynamic complexes, multivalent interactions, and even interactions between entirely disordered proteins. Here we review recent examples of IDP binding mechanisms elucidated by experimental techniques such as nuclear magnetic resonance spectroscopy, single-molecule Förster resonance energy transfer, and stopped-flow fluorescence. These techniques provide insights into the structural details of transition pathways and complex intermediates, and they capture the dynamics of IDPs within complexes. Furthermore, we discuss the growing role of artificial intelligence, exemplified by AlphaFold, in identifying interaction sites within IDPs and predicting their bound-state structures. Our review highlights the powerful complementarity between experimental methods and artificial intelligence-based approaches in advancing our understanding of the intricate interaction landscape of IDPs.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"90 ","pages":"Article 102958"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24001854","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in the characterization of intrinsically disordered proteins (IDPs) have unveiled a remarkably complex and diverse interaction landscape, including coupled folding and binding, highly dynamic complexes, multivalent interactions, and even interactions between entirely disordered proteins. Here we review recent examples of IDP binding mechanisms elucidated by experimental techniques such as nuclear magnetic resonance spectroscopy, single-molecule Förster resonance energy transfer, and stopped-flow fluorescence. These techniques provide insights into the structural details of transition pathways and complex intermediates, and they capture the dynamics of IDPs within complexes. Furthermore, we discuss the growing role of artificial intelligence, exemplified by AlphaFold, in identifying interaction sites within IDPs and predicting their bound-state structures. Our review highlights the powerful complementarity between experimental methods and artificial intelligence-based approaches in advancing our understanding of the intricate interaction landscape of IDPs.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation