Force drifts and matching errors in the lower extremities: implications for the control and perception of foot force.

IF 1.7 4区 医学 Q4 NEUROSCIENCES Experimental Brain Research Pub Date : 2024-12-31 DOI:10.1007/s00221-024-06990-w
Indrek Rannama, Anna Zusa, Mark L Latash
{"title":"Force drifts and matching errors in the lower extremities: implications for the control and perception of foot force.","authors":"Indrek Rannama, Anna Zusa, Mark L Latash","doi":"10.1007/s00221-024-06990-w","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate control of force on the environment is mechanically necessary for many tasks involving the lower extremities. We investigated drifts in the horizontal (shear) active force produced by right-footed seated subjects and the effects of force matching by the other foot. Subjects generated constant shear force at 15% and 30% of maximal voluntary contraction (MVC) using one foot. Visual feedback of shear force magnitude was provided for the first 5s, then turned off for 30s. During the 30% MVC task, we observed parallel drops in active shear and vertical force magnitudes leading to consistent drifts in the resultant force magnitude, not in its direction. Force matching by the other foot resulted in significantly lower forces when feedback was available throughout the trial. No feedback was provided for the matching foot. When the matching foot began exerting force, the task foot experienced a notable drop in all force components, with a change in force direction only for the task foot. After this initial drop, the downward drift in the task foot stopped or reversed. Subjects were unaware of these drifts and errors. Our findings suggest that shear force production involves setting a referent coordinate vector, which shows drifts and matching errors, while its direction remains stable. Involvement of the matching foot appears to perturb the neural commands to the task foot, with minor differences observed between feet. The discrepancy between the consistent force drifts and lack of awareness of the drifts indicates a difference between force perception-to-act and perception-to-report.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 1","pages":"37"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06990-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate control of force on the environment is mechanically necessary for many tasks involving the lower extremities. We investigated drifts in the horizontal (shear) active force produced by right-footed seated subjects and the effects of force matching by the other foot. Subjects generated constant shear force at 15% and 30% of maximal voluntary contraction (MVC) using one foot. Visual feedback of shear force magnitude was provided for the first 5s, then turned off for 30s. During the 30% MVC task, we observed parallel drops in active shear and vertical force magnitudes leading to consistent drifts in the resultant force magnitude, not in its direction. Force matching by the other foot resulted in significantly lower forces when feedback was available throughout the trial. No feedback was provided for the matching foot. When the matching foot began exerting force, the task foot experienced a notable drop in all force components, with a change in force direction only for the task foot. After this initial drop, the downward drift in the task foot stopped or reversed. Subjects were unaware of these drifts and errors. Our findings suggest that shear force production involves setting a referent coordinate vector, which shows drifts and matching errors, while its direction remains stable. Involvement of the matching foot appears to perturb the neural commands to the task foot, with minor differences observed between feet. The discrepancy between the consistent force drifts and lack of awareness of the drifts indicates a difference between force perception-to-act and perception-to-report.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
力漂移和匹配错误在下肢:影响控制和感知足力。
对于许多涉及下肢的任务,对环境的力的精确控制在机械上是必要的。我们研究了右脚坐着的受试者产生的水平(剪切)主动力的漂移和另一只脚的力匹配的影响。受试者在最大自主收缩(MVC)的15%和30%时产生恒定剪切力。前5s提供剪切力大小的视觉反馈,30s后关闭。在30%的MVC任务中,我们观察到主动剪切和垂直力大小的平行下降导致合力大小的一致漂移,而不是在其方向上。在整个试验过程中,当反馈可用时,另一只脚的力匹配结果显着降低。没有提供匹配脚的反馈。当匹配脚开始施力时,任务脚的所有力分量都明显下降,只有任务脚的力方向发生了变化。在最初的下降之后,任务脚的向下漂移停止或逆转。实验对象没有意识到这些偏差和错误。我们的研究结果表明,剪切力的产生涉及设置一个参考坐标向量,该坐标向量显示漂移和匹配误差,而其方向保持稳定。匹配脚的参与似乎扰乱了对任务脚的神经命令,在脚之间观察到微小的差异。持续的力漂移和缺乏对力漂移的意识之间的差异表明力感知-行动和感知-报告之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
期刊最新文献
Revisiting motor unit recruitment to TMS in amyotrophic lateral sclerosis: cortical inhibition is retained during voluntary contractions. Comparative analysis of Voxel-based morphometry using T1 and T2-weighted magnetic resonance imaging to explore the relationship between brain structure and cognitive abilities. Error compensation in a redundant system during 'failure' of individual motor elements. Reading words versus seeing font or handwriting style: a study of hemifield processing. Integrating vestibular and visual cues for verticality perception.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1