Metabolomics analysis reveals crucial effects of arbuscular mycorrhizal fungi on the metabolism of quality compounds in shoots and roots of Camellia sinensis L.
Shibei Ge, Zheng Zhang, Qiang Hu, Qiuhong Wang, Xuejiao Gong, Fan Huang, Lan Zhang, Wenyan Han, Fan Luo, Xin Li
{"title":"Metabolomics analysis reveals crucial effects of arbuscular mycorrhizal fungi on the metabolism of quality compounds in shoots and roots of Camellia sinensis L.","authors":"Shibei Ge, Zheng Zhang, Qiang Hu, Qiuhong Wang, Xuejiao Gong, Fan Huang, Lan Zhang, Wenyan Han, Fan Luo, Xin Li","doi":"10.1016/j.plaphy.2024.109426","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) are known as plants' mutualists to enhance plant growth, but their impact on the quality-related metabolites in Camellia sinensis still needs to be studied. In this study, the 2-year-old potted C. sinensis cv. 'Longjing 43' was inoculated with AMF Rhizophagus irregularis to examine the effect of AMF colonization for 3 months on plant growth, photosynthesis, and changes in metabolomics and associated gene expression in the shoots and roots of tea plants. The results showed that AMF not only promoted the growth of tea plants but also significantly up-regulated the total contents of flavonoids and free amino acids, especially the anthocyanins, flavanols, GABA, and arginine. Consistently, the expression of genes such as F3H, DFR, LAR, ANR, UFGT, GDH, and GS in tea shoots was induced by AMF. Further studies found that transcription factors MYBs and HY5, as well as phytohormone strigolactones, were induced by AMF, which may participate in the regulatory mechanism controlling the metabolism of tea-quality compounds. These findings revealed regulatory mechanisms through which AMF affected tea quality and provided a theoretical basis for the application of AMF in tea gardens to improve the economic value and health benefits of tea.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109426"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109426","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Arbuscular mycorrhizal fungi (AMF) are known as plants' mutualists to enhance plant growth, but their impact on the quality-related metabolites in Camellia sinensis still needs to be studied. In this study, the 2-year-old potted C. sinensis cv. 'Longjing 43' was inoculated with AMF Rhizophagus irregularis to examine the effect of AMF colonization for 3 months on plant growth, photosynthesis, and changes in metabolomics and associated gene expression in the shoots and roots of tea plants. The results showed that AMF not only promoted the growth of tea plants but also significantly up-regulated the total contents of flavonoids and free amino acids, especially the anthocyanins, flavanols, GABA, and arginine. Consistently, the expression of genes such as F3H, DFR, LAR, ANR, UFGT, GDH, and GS in tea shoots was induced by AMF. Further studies found that transcription factors MYBs and HY5, as well as phytohormone strigolactones, were induced by AMF, which may participate in the regulatory mechanism controlling the metabolism of tea-quality compounds. These findings revealed regulatory mechanisms through which AMF affected tea quality and provided a theoretical basis for the application of AMF in tea gardens to improve the economic value and health benefits of tea.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.