Planktonic drivers of carbon transformation during different stages of the spring bloom at the Patagonian Shelf-break front, Southwestern Atlantic Ocean

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Biogeochemistry Pub Date : 2025-01-02 DOI:10.1007/s10533-024-01192-6
Azul S. Gilabert, Celeste López-Abbate, Pedro Flombaum, Fernando Unrein, Lisandro A. Arbilla, John E. Garzón-Cardona, Ana M. Martinez, Federico M. Ibarbalz, Flora Vincent, Martin Saraceno, Laura A. Ruiz-Etcheverry, Carola Ferronato, Valeria A. Guinder, Ricardo Silva, Román A. Uibrig, Valeria D’Agostino, Rocío Loizaga, Rubén J. Lara
{"title":"Planktonic drivers of carbon transformation during different stages of the spring bloom at the Patagonian Shelf-break front, Southwestern Atlantic Ocean","authors":"Azul S. Gilabert,&nbsp;Celeste López-Abbate,&nbsp;Pedro Flombaum,&nbsp;Fernando Unrein,&nbsp;Lisandro A. Arbilla,&nbsp;John E. Garzón-Cardona,&nbsp;Ana M. Martinez,&nbsp;Federico M. Ibarbalz,&nbsp;Flora Vincent,&nbsp;Martin Saraceno,&nbsp;Laura A. Ruiz-Etcheverry,&nbsp;Carola Ferronato,&nbsp;Valeria A. Guinder,&nbsp;Ricardo Silva,&nbsp;Román A. Uibrig,&nbsp;Valeria D’Agostino,&nbsp;Rocío Loizaga,&nbsp;Rubén J. Lara","doi":"10.1007/s10533-024-01192-6","DOIUrl":null,"url":null,"abstract":"<div><p>The processes involved in the carbon cycle are essential for marine trophic networks and global climate regulation. Interactions within the microbial loop play key roles in carbon transformation and transport across the food web. The Argentine Patagonian Shelf in the Southwestern Atlantic Ocean is a hotspot for carbon sequestration. However, our understanding of microbial impacts on carbon cycling in this area remains limited. This study examines the microbial community structure and its role in the carbon transformation during a progression of the spring bloom along the Patagonian shelf-break and adjacent ocean. This progression was studied in a latitudinal track where we observed a gradient of Dissolved Organic Matter (DOM) complexity. In the northern area, the bloom termination was characterised by low Chlorophyll-a concentrations, with smaller organisms (<i>Synechococcus)</i> dominating the autotrophic plankton biomass, and high viral concentrations. DOM showed high humification and aromaticity, indicating an intensified microbial activity by heterotrophic bacteria that followed the production of phytoplankton-derived DOM. In the southern area, high Chlorophyll-a was mainly attributed to large protist plankton, accompanied by abundant heterotrophic bacteria and bioavailable DOM from recent phytoplankton blooms. These results showed that during bloom termination, bacterial production of refractory compounds significantly immobilises carbon, suggesting a potential pathway for carbon sequestration. Additionally, data suggest high carbon retention on the shelf side of the front by microbial transformation and efficient trophic transfer within the microbial community, while the side influenced by the Malvinas Current, presents high carbon export by advection and a higher degree of unutilised carbon from bacterial origin. These findings highlight rapid shifts in carbon dynamics driven by microbial successions during different bloom phases.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01192-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01192-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The processes involved in the carbon cycle are essential for marine trophic networks and global climate regulation. Interactions within the microbial loop play key roles in carbon transformation and transport across the food web. The Argentine Patagonian Shelf in the Southwestern Atlantic Ocean is a hotspot for carbon sequestration. However, our understanding of microbial impacts on carbon cycling in this area remains limited. This study examines the microbial community structure and its role in the carbon transformation during a progression of the spring bloom along the Patagonian shelf-break and adjacent ocean. This progression was studied in a latitudinal track where we observed a gradient of Dissolved Organic Matter (DOM) complexity. In the northern area, the bloom termination was characterised by low Chlorophyll-a concentrations, with smaller organisms (Synechococcus) dominating the autotrophic plankton biomass, and high viral concentrations. DOM showed high humification and aromaticity, indicating an intensified microbial activity by heterotrophic bacteria that followed the production of phytoplankton-derived DOM. In the southern area, high Chlorophyll-a was mainly attributed to large protist plankton, accompanied by abundant heterotrophic bacteria and bioavailable DOM from recent phytoplankton blooms. These results showed that during bloom termination, bacterial production of refractory compounds significantly immobilises carbon, suggesting a potential pathway for carbon sequestration. Additionally, data suggest high carbon retention on the shelf side of the front by microbial transformation and efficient trophic transfer within the microbial community, while the side influenced by the Malvinas Current, presents high carbon export by advection and a higher degree of unutilised carbon from bacterial origin. These findings highlight rapid shifts in carbon dynamics driven by microbial successions during different bloom phases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
期刊最新文献
Expanding towards contraction: the alternation of floods and droughts as a fundamental component in river ecology Planktonic drivers of carbon transformation during different stages of the spring bloom at the Patagonian Shelf-break front, Southwestern Atlantic Ocean Sulfidic mine waste rock alkaliphilic microbial communities rapidly replaced by aerobic acidophiles following deposition Metal-bound carbon and nutrients across hydrologically diverse boreal peatlands Correction to: Iron as a precursor of aggregation and vector of organic carbon to sediments in a boreal lake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1