Vasiliki Panagiotopoulou, Lorenzo Brancato, Emanuele Petriconi, Andrea Baldi, Ugo Mariani, Marco Giglio, Claudio Sbarufatti
{"title":"Comparative study on ballistic impact detection in helicopter transmission shafts using NARX and LSTM models","authors":"Vasiliki Panagiotopoulou, Lorenzo Brancato, Emanuele Petriconi, Andrea Baldi, Ugo Mariani, Marco Giglio, Claudio Sbarufatti","doi":"10.1007/s10489-024-06118-1","DOIUrl":null,"url":null,"abstract":"<div><p>Vibration-based techniques are vital for online structural health monitoring (SHM) of rotating machines, enabling fault detection through feature analysis and threshold establishment. Rotating shafts typically exhibit non-linear dynamic behaviour, often due to misalignment or manufacturing imperfections leading to eccentricity. This non-linear behaviour is amplified after ballistic impact, leading to significant asymmetries and increased vibration loads. In this study, we develop an advanced vibration-based method to address the gap in diagnostic tools used to identify ballistic impact damage in helicopter transmission shafts. The proposed scheme employs a non-linear autoregressive model with exogenous inputs (NARX), evaluated against a long short-term memory (LSTM) model, to estimate acceleration signals from a two-sensor cluster. It then uses the estimation error arising from significant variations in signals acquired before and after ballistic impact to assess the structural integrity of the operating structure. The efficiency of the models is validated using experimental data obtained during ballistics testing. The results show that the proposed method effectively detects various types of impact damage, offering a promising tool for ballistic impact diagnosis in helicopter transmission shafts.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06118-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Vibration-based techniques are vital for online structural health monitoring (SHM) of rotating machines, enabling fault detection through feature analysis and threshold establishment. Rotating shafts typically exhibit non-linear dynamic behaviour, often due to misalignment or manufacturing imperfections leading to eccentricity. This non-linear behaviour is amplified after ballistic impact, leading to significant asymmetries and increased vibration loads. In this study, we develop an advanced vibration-based method to address the gap in diagnostic tools used to identify ballistic impact damage in helicopter transmission shafts. The proposed scheme employs a non-linear autoregressive model with exogenous inputs (NARX), evaluated against a long short-term memory (LSTM) model, to estimate acceleration signals from a two-sensor cluster. It then uses the estimation error arising from significant variations in signals acquired before and after ballistic impact to assess the structural integrity of the operating structure. The efficiency of the models is validated using experimental data obtained during ballistics testing. The results show that the proposed method effectively detects various types of impact damage, offering a promising tool for ballistic impact diagnosis in helicopter transmission shafts.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.