Diego Alberto Aranda Britez, Alejandro Tapia, Pablo Millán Gata
{"title":"A self-calibration algorithm for soil moisture sensors using deep learning","authors":"Diego Alberto Aranda Britez, Alejandro Tapia, Pablo Millán Gata","doi":"10.1007/s10489-024-05921-0","DOIUrl":null,"url":null,"abstract":"<p>In the current era of smart agriculture, accurately measuring soil moisture has become crucial for optimising irrigation systems, significantly improving water use efficiency and crop yields. However, existing soil moisture sensor technologies often suffer from accuracy issues, leading to inefficient irrigation practices. The calibration of these sensors is limited by conventional methods that rely on extensive ground reference data, making the process both costly and impractical. This study introduces an innovative self-calibration method for soil moisture sensors using deep learning. The proposed method focuses on a novel strategy requiring only two characteristic points for calibration: saturation and field capacity. Deep learning algorithms enable effective and accurate in-situ self-calibration of sensors. This method was tested using a large dataset of simulated erroneous sensor readings generated with simulation software. The results demonstrate that the method significantly improves soil moisture measurement accuracy, with 84.83% of sensors showing improvement, offering a more agile and cost-effective implementation compared to traditional approaches. This advance represents a significant step towards more efficient and sustainable agriculture, offering farmers a valuable tool for optimal water and crop management, while highlighting the potential of deep learning in solving complex engineering challenges.</p>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05921-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the current era of smart agriculture, accurately measuring soil moisture has become crucial for optimising irrigation systems, significantly improving water use efficiency and crop yields. However, existing soil moisture sensor technologies often suffer from accuracy issues, leading to inefficient irrigation practices. The calibration of these sensors is limited by conventional methods that rely on extensive ground reference data, making the process both costly and impractical. This study introduces an innovative self-calibration method for soil moisture sensors using deep learning. The proposed method focuses on a novel strategy requiring only two characteristic points for calibration: saturation and field capacity. Deep learning algorithms enable effective and accurate in-situ self-calibration of sensors. This method was tested using a large dataset of simulated erroneous sensor readings generated with simulation software. The results demonstrate that the method significantly improves soil moisture measurement accuracy, with 84.83% of sensors showing improvement, offering a more agile and cost-effective implementation compared to traditional approaches. This advance represents a significant step towards more efficient and sustainable agriculture, offering farmers a valuable tool for optimal water and crop management, while highlighting the potential of deep learning in solving complex engineering challenges.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.