A self-correction algorithm for transparent object shadow detection

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-01-06 DOI:10.1007/s10489-024-06001-z
Jiaqi Li, Shuhuan Wen, Rongting Chen, Di Lu, Jianyi Hu, Hong Zhang
{"title":"A self-correction algorithm for transparent object shadow detection","authors":"Jiaqi Li,&nbsp;Shuhuan Wen,&nbsp;Rongting Chen,&nbsp;Di Lu,&nbsp;Jianyi Hu,&nbsp;Hong Zhang","doi":"10.1007/s10489-024-06001-z","DOIUrl":null,"url":null,"abstract":"<div><p>Shadow detection for transparent objects is a challenging task. The difficulty arises from the fact that transparent objects and shadow regions are prone to occlusion, and the boundaries of transparent objects become more blurred due to optical effects, ultimately leading to incomplete shadow detection results. In this paper, a novel semisupervised shadow detection algorithm based on self-correction is proposed to address these problems. We construct a shadow detection module based on a hybrid attention mechanism CBAM and integrate the short-term memory capability of LSTM networks, assisting the model in accurately localizing shadow areas based on prior experience. To address the issue of easily overlooked shadow areas, we aim to minimize the difference between the predicted shadow mask and the real shadow mask as our optimization objective. We train the shadow self-correction module using binary cross-entropy loss to enhance the model’s ability to detect shadow areas that are prone to be overlooked. Furthermore, a pretrained boundary detector is utilized to obtain the boundary information between the predicted and real shadow masks. The shadow detection model is then optimized under the constraint of boundary consistency, enabling the model to more accurately identify the boundaries of shadow regions and enhancing the shadow detection performance. The experimental results indicate that, compared to existing shadow detection algorithms, the proposed algorithm performs well in terms of both transparent and nontransparent object shadow detection.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06001-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Shadow detection for transparent objects is a challenging task. The difficulty arises from the fact that transparent objects and shadow regions are prone to occlusion, and the boundaries of transparent objects become more blurred due to optical effects, ultimately leading to incomplete shadow detection results. In this paper, a novel semisupervised shadow detection algorithm based on self-correction is proposed to address these problems. We construct a shadow detection module based on a hybrid attention mechanism CBAM and integrate the short-term memory capability of LSTM networks, assisting the model in accurately localizing shadow areas based on prior experience. To address the issue of easily overlooked shadow areas, we aim to minimize the difference between the predicted shadow mask and the real shadow mask as our optimization objective. We train the shadow self-correction module using binary cross-entropy loss to enhance the model’s ability to detect shadow areas that are prone to be overlooked. Furthermore, a pretrained boundary detector is utilized to obtain the boundary information between the predicted and real shadow masks. The shadow detection model is then optimized under the constraint of boundary consistency, enabling the model to more accurately identify the boundaries of shadow regions and enhancing the shadow detection performance. The experimental results indicate that, compared to existing shadow detection algorithms, the proposed algorithm performs well in terms of both transparent and nontransparent object shadow detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
A self-correction algorithm for transparent object shadow detection A self-calibration algorithm for soil moisture sensors using deep learning Predicting the value of football players: machine learning techniques and sensitivity analysis based on FIFA and real-world statistical datasets DT4PEIS: detection transformers for parasitic egg instance segmentation Hierarchical loop closure detection with weighted local patch features and global descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1